Physics (PHYS)

Courses

PHYS 101. Essentials of Physics. 4 Credits.
Fundamental physical principles. Mechanics.
Additional Information: Science Area

PHYS 152. Physics of Sound and Music. 4 Credits.
Introduction to the wave nature of sound; hearing; musical instruments and scales; auditorium acoustics; and the transmission, storage, and reproduction of sound.
Additional Information: Science Area

PHYS 153. Physics of Light, Color, and Vision. 4 Credits.
Light and color, their nature, how they are produced, and how they are perceived and interpreted.
Additional Information: Science Area

PHYS 155. Physics Behind the Internet. 4 Credits.
How discoveries in 20th-century physics mesh to drive modern telecommunications. Topics include electron mobility in matter, the development of transistors and semiconductors, lasers, and optical fibers.
Additional Information: Science Area

PHYS 156M. Scientific Revolutions. 4 Credits.
Surveys several major revolutions in our views of the natural and technological world, focusing on scientific concepts and methodological aspects. For nonscience majors. Multilisted with ERTH 156M.
Equivalent to: GEOL 156M
Additional Information: Science Area

PHYS 161. Physics of Energy and Environment. 4 Credits.
Practical study of energy generation and environmental impact, including energy fundamentals, fossil fuel use, global warming, nuclear energy, and energy conservation.
Additional Information: Science Area

PHYS 162. Solar and Other Renewable Energies. 4 Credits.
Topics include photovoltaic cells, solar thermal power, passive solar heating, energy storage, geothermal energy, and wind energy.
Additional Information: Science Area

PHYS 171. The Physics of Life. 4 Credits.
Explores how physical laws guide the structure, function, and behavior of living organisms, and examines the physical properties of biological materials. Topics span microscopic and macroscopic scales.
Additional Information: Science Area

PHYS 181. Quantum Mechanics for Everyone. 4 Credits.
Introduction to quantum mechanics, a set of sometimes counterintuitive scientific principals describing atoms and light, along with the modern technologies it makes possible.
Additional Information: Science Area

PHYS 196. Field Studies: [Topic]. 1-2 Credits.
Repeatable.
Repeatable 99 times

PHYS 198. Workshop: [Topic]. 1-2 Credits.
Repeatable.
Repeatable 99 times

PHYS 199. Special Studies: [Topic]. 1-5 Credits.
Repeatable.

PHYS 201. General Physics. 4 Credits.
Introductory series. Mechanics and fluids.
Requisites: Prereq: MATH 112Z or equivalent.
Additional Information: Science Area

PHYS 202. General Physics. 4 Credits.
Introductory series. Thermodynamics, waves, optics.
Requisites: Prereq: PHYS 201.
Additional Information: Science Area

PHYS 203. General Physics. 4 Credits.
Introductory series. Electricity, magnetism, modern physics.
Requisites: Prereq: PHYS 201.
Additional Information: Science Area

PHYS 204. Introductory Physics Laboratory. 2 Credits.
Practical exploration of the principles studied in general-physics lecture. Measurement and analysis methods applied to experiments in mechanics, waves, sound, thermodynamics, electricity and magnetism, optics, and modern physics. Sequence.
Requisites: Pre- or coreq: PHYS 201.

PHYS 205. Introductory Physics Laboratory. 2 Credits.
Practical exploration of the principles studied in general-physics lecture. Measurement and analysis methods applied to experiments in mechanics, waves, sound, thermodynamics, electricity and magnetism, optics, and modern physics.
Requisites: Pre- or coreq: PHYS 202.

PHYS 206. Introductory Physics Laboratory. 2 Credits.
Practical exploration of the principles studied in general-physics lecture. Measurement and analysis methods applied to experiments in mechanics, waves, sound, thermodynamics, electricity and magnetism, optics, and modern physics.
Requisites: Pre- or coreq: PHYS 203.

PHYS 251. Foundations of Physics I. 4 Credits.
Newtonian mechanics; units and vectors; one-dimensional motion; Newton's laws; work and energy; momentum and collisions. Sequence.
Requisites: Prereq: MATH 112Z or equivalent. Coreq: MATH 251.
Additional Information: Science Area

PHYS 252. Foundations of Physics II. 4 Credits.
Vibrations and waves; oscillations; wave mechanics; dispersion; modes; introductory optics.
Requisites: Prereq: PHYS 251; coreq: MATH 252 or equivalent.
Additional Information: Science Area
PHYS 253. Foundations of Physics I. 4 Credits.
Electricity and magnetism; charge and electric field; electric potential; circuits; magnetic field; inductance.
Requisites: Prereq: PHYS 252; coreq: MATH 253 or equivalent.
Additional Information:
Science Area

PHYS 290. Foundations of Physics Laboratory. 1 Credit.
Repeatable. Introduction to laboratory measurements, reports, instrumentation, and experimental techniques. Repeatable twice for maximum of 3 credits.
Requisites: Coreq: PHYS 251, PHYS 252 or PHYS 253.
Repeatable 2 times for a maximum of 3 credits

PHYS 299. Special Studies: [Topic]. 1-5 Credits.
Repeatable.
Repeatable 99 times

PHYS 351. Foundations of Physics II. 4 Credits.
Introduction to relativity and quantum physics with applications to atomic, solid-state, nuclear, and astro-particle systems
Requisites: Prereq: MATH 253 is co-req.

PHYS 352. Thermal Physics and Statistical Mechanics I. 4 Credits.
Thermodynamic systems; first and second laws; kinetic theory of gases; entropy. Sequence.
Requisites: Prereq: PHYS 351; coreq: MATH 281.

PHYS 353. Thermal Physics and Statistical Mechanics II. 4 Credits.
Thermal radiation; Maxell-Boltzmann statistics; Fermi and Bose gases; phase transitions. Sequence.
Requisites: Prereq: PHYS 352; coreq: MATH 282.

PHYS 369M. Science of Climbing. 2 Credits.
Introduction to the physics and scientific principles behind climbing, climbing equipment, anchors, ropes, climbing gear, static versus dynamic load, fall factor, and breaking strength. A prerequisite is students must have completed at least one Outdoor Program climbing course. Multilisted with PEO 369M.
Requisites: Prereq: PEO 251.
Equivalent to: PEO 369M

PHYS 389. Mathematical Methods. 4 Credits.
Essential mathematical background for 400-level physics courses in classical mechanics, electricity and magnetism, and quantum mechanics. The emphasis is on the conceptual basis of the following topics and their connections, with an emphasis on physical applications, vector algebra and calculus. Dirac delta function, partial differential equations, linear algebra of function spaces, orthonormal bases, Dirac notation, special functions, standard and general Fourier analysis, matrices, eigenvalue equations, Fourier transforms.
Requisites: Prereq: MATH 281.

PHYS 391. Physics Experimentation Data Analysis Laboratory. 4 Credits.
Practical aspects of physics experimentation, including data acquisition, statistical analysis, and introduction to scientific programming, and use of Fourier methods for data analysis.
Requisites: Prereq: PHYS 253 or equivalent.

PHYS 399. Special Studies: [Topic]. 1-5 Credits.
Repeatable.
Repeatable 99 times

PHYS 400M. Temporary Multilisted Course. 1-5 Credits.
Repeatable.
Repeatable 99 times

PHYS 401. Research: [Topic]. 1-16 Credits.
Repeatable.
Repeatable 99 times

PHYS 402. Supervised Tutoring. 1-12 Credits.
Repeatable.
Repeatable 99 times

PHYS 403. Thesis. 1-12 Credits.
Repeatable.
Repeatable 99 times

PHYS 405. Reading and Conference: [Topic]. 1-16 Credits.
Repeatable.
Repeatable 99 times

PHYS 406. Practicum: [Topic]. 1-21 Credits.
Repeatable.
Repeatable 99 times

PHYS 407. Seminar: [Topic]. 1-4 Credits.
Repeatable.
Repeatable 99 times

PHYS 408. Workshop: [Topic]. 1-21 Credits.
Repeatable.
Repeatable 99 times

PHYS 409. Terminal Project. 1-12 Credits.
Repeatable.
Repeatable 99 times

PHYS 410. Experimental Course: [Topic]. 1-4 Credits.
Repeatable.
Repeatable 99 times

PHYS 410L. Experimental Course: [Topic]. 4 Credits.
Repeatable.
Repeatable 99 times

PHYS 411. Mechanics. 4 Credits.
Fundamental principles of Newtonian mechanics, conservation laws, small oscillations, planetary motion, systems of particles. Electromagnetic phenomena. Only nonmajors may earn graduate credit.
Requisites: Prereq: MATH 282.

PHYS 412. Electricity and Magnetism I. 4 Credits.
Fundamental principles of Newtonian mechanics, conservation laws, small oscillations, planetary motion, systems of particles. Electromagnetic phenomena.
Requisites: Prereq: MATH 281.

PHYS 413. Electricity and Magnetism II. 4 Credits.
Fundamental principles of Newtonian mechanics, conservation laws, small oscillations, planetary motion, systems of particles. Electromagnetic phenomena.
Requisites: Prereq: PHYS 412.

PHYS 414. Quantum Physics. 4 Credits.
Planck's and de Broglie's postulates, the uncertainty principle, Bohr's model of the atom, the Schroedinger equation in one dimension, the harmonic oscillator, the hydrogen atom, molecules and solids, nuclei and elementary particles. Sequence.
Requisites: Prereq: PHYS 413.
PHYS 415. Quantum Physics. 4 Credits.
Planck’s and de Broglie’s postulates, the uncertainty principle, Bohr’s model of the atom, the Schröedinger equation in one dimension, the harmonic oscillator, the hydrogen atom, molecules and solids, nuclei and elementary particles. Sequence.
Requisites: Prereq: PHYS 414.

PHYS 417. Topics in Quantum Physics. 4 Credits.
Perturbation theory, variational principle, time-dependent perturbation theory, elementary scattering theory.
Requisites: Prereq: PHYS 415.

PHYS 421M. Partial Differential Equations: Fourier Analysis I. 4 Credits.
Introduction to PDEs with a view towards applications in physics. Wave and heat equations, classical Fourier series on the circle, Bessel and Legendre series. Multilisted with MATH 421M.
Requisites: Prereq: MATH 253; one from MATH 256, MATH 281.
Equivalent to: MATH 421M

PHYS 422. Electromagnetism. 4 Credits.
Study of electromagnetic waves. Topics include Maxwell’s equations, wave equation, plane waves, guided waves, antennas, and other related phenomena.
Requisites: Prereq: PHYS 253.

PHYS 423M. Introduction to Space Physics. 4 Credits.
Course explores the interaction of the solar wind with the Earth’s magnetosphere using fundamental plasma physics supported and motivated by spacecraft observations. Students will gain an understanding of the physics governing the interaction building from single particle plasma motion to specific observation supported examples.
Requisites: Prereq: PHYS 253, MATH 282.
Equivalent to: ERTH 423M

PHYS 424. Classical Optics. 4 Credits.
Geometrical optics, polarization, interference, Fraunhofer and Fresnel diffraction.
Requisites: Prereq: PHYS 353.

PHYS 425. Modern Optics. 4 Credits.
Special topics in modern applied optics such as Fourier optics, coherence theory, resonators and lasers, holography, and image processing.
Requisites: Prereq: PHYS 424.

PHYS 431. Analog Electronics. 4 Credits.
Requisites: Prereq: PHYS 203 or PHYS 253; MATH 256.

PHYS 432. Digital Electronics. 4 Credits.
Digital electronics including digital logic, measurement, signal processing and control. Introduction to computer interfacing.
Requisites: Prereq: PHYS 203 or equivalent; MATH 253.

PHYS 444. Introduction to Biological Physics. 4 Credits.
The application of physical principles to the study of the living world, especially at molecular and cellular scales. Topics include the mechanical properties of biomaterials, the sensory abilities of cells and organisms, and the dynamical properties of information processing networks.
Requisites: Prereq: PHYS 353, MATH 281, basic computer programming skills.

PHYS 481. Design of Experiments. 4 Credits.
Applies statistics to practical data analysis, data-based decision making, model building, and the design of experiments. Emphasizes factorial designs.

PHYS 483. General Relativity I. 4 Credits.
This course will serve as an introduction to the concept of gravity as geometry. The course begins by motivating the need for General Relativity and culminates in the presentation of the Einstein equation, presenting some of the simplest solutions to the Einstein equation.
Requisites: Prereq: PHYS 411, PHYS 413.

PHYS 489. The Physics Behind Quantum Computers. 4 Credits.
Quantum computing is a new way of computing based on the rules of Quantum mechanics. We study what sort of computations can be performed by atoms, ions, and superconducting electric circuits.
Requisites: Prereq: PHYS 414 is co-req.

PHYS 491. Research Project I. 2-4 Credits.
For physics and other science majors, Physics Projects entails construction and use of apparatus, interfaces and computers to perform technically-sophisticated experiments, analyze and communicate results.
Requisites: Prereq: PHYS 253.

PHYS 492. Research Project II. 2-4 Credits.
For physics and other science majors, Physics Projects entails construction and use of apparatus, interfaces and computers to perform technically-sophisticated experiments, analyze and communicate results.
Requisites: Prereq: PHYS 491.

PHYS 493. Research Project III. 2-4 Credits.
For physics and other science majors, Physics Projects entails construction and use of apparatus, interfaces and computers to perform technically-sophisticated experiments, analyze and communicate results.
Requisites: Prereq: PHYS 492.

PHYS 500M. Temporary Multilisted Course. 1-5 Credits.
Repeatable.
Repeatable 99 times

PHYS 503. Thesis. 1-16 Credits.
Repeatable.
Repeatable 99 times

PHYS 507. Seminar: [Topic]. 1-4 Credits.
Repeatable.
Repeatable 99 times

PHYS 508. Workshop: [Topic]. 1-21 Credits.
Repeatable.
Repeatable 99 times

PHYS 510. Experimental Course: [Topic]. 1-4 Credits.
Repeatable.
Repeatable 99 times

PHYS 510L. Experimental Course: [Topic]. 4 Credits.
Repeatable.
Repeatable 99 times

PHYS 521M. Partial Differential Equations: Fourier Analysis I. 4 Credits.
Introduction to PDEs with a view towards applications in physics. Wave and heat equations, classical Fourier series on the circle, Bessel and Legendre series. Multilisted with MATH 521M.
PHYS 523M. Introduction to Space Physics. 4 Credits.
Course explores the interaction of the solar wind with the Earth's magnetosphere using fundamental plasma physics supported and motivated by spacecraft observations. Students will gain an understanding of the physics governing the interaction building from single particle plasma motion to specific observation supported examples.

PHYS 525. Modern Optics. 4 Credits.
Special topics in modern applied optics such as Fourier optics, coherence theory, resonators and lasers, holography, and image processing.

PHYS 544. Introduction to Biological Physics. 4 Credits.
The application of physical principles to the study of the living world, especially at molecular and cellular scales. Topics include the mechanical properties of biomaterials, the sensory abilities of cells and organisms, and the dynamical properties of information processing networks.

Requisites: Prereq: Basic computer programming skills.

PHYS 581. Design of Experiments. 4 Credits.
Applies statistics to practical data analysis, data-based decision making, model building, and the design of experiments. Emphasizes factorial designs.

PHYS 583. General Relativity I. 4 Credits.
This course will serve as an introduction to the concept of gravity as geometry. The course begins by motivating the need for General Relativity and culminate in the presentation of the Einstein equation, presenting some of the simplest solutions to the Einstein equation.

PHYS 589. The Physics Behind Quantum Computers. 4 Credits.
Quantum computing is a new way of computing based on the rules of Quantum mechanics. We study what sort of computations can be performed by atoms, ions, and superconducting electric circuits.

PHYS 601. Research: [Topic]. 1-16 Credits.
Repeatable.

PHYS 603. Dissertation. 1-16 Credits.
Repeatable.

PHYS 604. Internship: [Topic]. 1-16 Credits.
Repeatable.
Requisites: Coreq: good standing in applied physics master's degree program.

PHYS 605. Reading and Conference: [Topic]. 1-16 Credits.
Repeatable.

PHYS 606. Practicum: [Topic]. 1-16 Credits.
Repeatable.

PHYS 607. Seminar: [Topic]. 1-4 Credits.
Repeatable. Recent topics include Astrophysics and Gravitation, Biophysics, Condensed Matter, High Energy Physics, Physics Colloquium, Theoretical Physics.

PHYS 608. Workshop: [Topic]. 1-16 Credits.
Repeatable.

PHYS 609. Terminal Project. 1-16 Credits.
Repeatable.

PHYS 610. Experimental Course: [Topic]. 1-4 Credits.
Repeatable 99 times

PHYS 610L. Experimental Course: [Topic]. 4 Credits.
Repeatable 99 times

PHYS 611. Theoretical Mechanics. 4 Credits.
Lagrangian and Hamiltonian mechanics, small oscillations, rigid bodies. Sequence.

PHYS 612. Theoretical Mechanics. 2 Credits.
Lagrangian and Hamiltonian mechanics, small oscillations, rigid bodies. Sequence.

Requisites: Prereq: PHYS 611.

PHYS 613. Statistical Physics. 4 Credits.

PHYS 614. Statistical Physics. 4 Credits.

Requisites: Prereq: PHYS 613.

PHYS 622. Electromagnetic Theory. 4 Credits.
Microscopic form of Maxwell's equations, derivation and solution of the wave equation, Lorentz covariant formulation, motion of charges in given fields, propagation and diffraction, radiation by given sources, coupled motion of sources and fields, the electromagnetic field in dense media.

PHYS 623. Electromagnetic Theory. 4 Credits.
Microscopic form of Maxwell's equations, derivation and solution of the wave equation, Lorentz covariant formulation, motion of charges in given fields, propagation and diffraction, radiation by given sources, coupled motion of sources and fields, the electromagnetic field in dense media. Sequence.

Requisites: Prereq: PHYS 622.

PHYS 626. Physical Optics with Labs. 4 Credits.
Fundamentals of applied geometric and wave optics theory, reinforced through homework assignments, and explored in experiments conducted with lasers and optical components. Sequence with PHYS 627, PHYS 628.

PHYS 627. Optical Materials and Devices. 4 Credits.
Principles of quantum mechanics and solid-state physics relating to material properties of optoelectronic devices with corresponding laboratories teaching how to operate and characterize these devices. Sequence with PHYS 626, PHYS 628.

Requisites: Prereq: PHYS 626.

PHYS 631. Quantum Mechanics. 4 Credits.

PHYS 632. Quantum Mechanics. 4 Credits.
Approximation methods, scattering. Sequence.

Requisites: Prereq: PHYS 631.

PHYS 633. Quantum Mechanics. 4 Credits.
Rotation symmetry, spin, identical particles. Sequence.

Requisites: Prereq: PHYS 632.
PHYS 661. Particle Physics I. 4 Credits.
Theory, phenomenology, and experimental basis of the standard model of particle physics: fundamentals; symmetries; quantum electrodynamics; R; quarks and leptons; chirality; flavor symmetry; mesons; baryons; form factors; deep inelastic scattering. Sequence.

PHYS 662. Particle Physics II. 4 Credits.
Theory, phenomenology, and experimental basis of the standard model of particle physics: quantum chromodynamics; parton distribution functions; hadron-hadron collisions; particle interactions in matter; collider detectors; experimental methodologies to analyze data; statistical thresholds and significance. Sequence.

PHYS 663. Particle Physics III. 4 Credits.
Theory, phenomenology, and experimental basis of the standard model of particle physics: electroweak symmetry breaking; CKM mixing; Higgs couplings; early universe cosmology; Friedmann expansion; entropy; freeze-out; impact of neutrinos on cosmology; dark matter evidence and candidates. Sequence with PHYS 661, PHYS 662.

PHYS 664. Quantum Field Theory. 4 Credits.
Canonical quantization, path integral formulation of quantum field theory, Feynman rules for perturbation theory, quantum electrodynamics, renormalization, gauge theory of the strong and electroweak interactions. Sequence with PHYS 665, PHYS 666.

PHYS 665. Quantum Field Theory II. 4 Credits.
The purpose of this course is to apply the methodology established in QFT I to theories of charged fermions coupled to a photon. Then we will begin to explore QFT beyond leading order. Sequence with PHYS 664, PHYS 666.

PHYS 666. Quantum Field Theory III. 4 Credits.
The purpose of this course is to understand QFT at loop level, and to extend the formalism to non-Abelian gauge bosons. In addition, we will cover a variety of special topics. This course is designed to be the last quarter of a full year sequence. Sequence with PHYS 664, PHYS 665.

PHYS 671. Solid State Physics. 4 Credits.
Crystallography; thermal, electrical, optical, and magnetic properties of solids; band theory; metals, semiconductors, and insulators; defects in solids. Sequence.

PHYS 672. Solid State Physics. 4 Credits.
Crystallography; thermal, electrical, optical, and magnetic properties of solids; band theory; metals, semiconductors, and insulators; defects in solids. Sequence.

PHYS 674. Theory of Condensed Matter. 4 Credits.
Advanced topics include quantum and statistical description of many-particle systems, electronic structure, elementary excitations in solids and fluids, critical phenomena, statics and dynamics of soft condensed matter. Topics and emphasis vary.

PHYS 675. Theory of Condensed Matter. 4 Credits.
Advanced topics include quantum and statistical description of many-particle systems, electronic structure, elementary excitations in solids and fluids, critical phenomena, statics and dynamics of soft condensed matter. Topics and emphasis vary.

PHYS 677M. Semiconductor Device Physics. 4 Credits.
Introduction to the theory behind semiconductors. Elementary theory of inorganic solids; electronic structures and transport properties. Basic theory of devices including diodes, transistors, mosfets, and optoelectronic devices. Offered only in summer. Sequence with PHYS 678M, PHYS 679M. Multilisted with CH 677M.

PHYS 678M. Semiconductor Processing and Characterization Technology. 4 Credits.
Introduction to the techniques required to make semiconductors and test their properties. Solid-state and surface chemistry of inorganic semiconductors as it pertains to microelectronic devices. Offered only in summer. Multilisted with CH 678M. Sequence with PHYS 677M, PHYS 679M.

PHYS 684. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 685. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 686. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 687. Theory of Condensed Matter. 4 Credits.
Advanced topics include quantum and statistical description of many-particle systems, electronic structure, elementary excitations in solids and fluids, critical phenomena, statics and dynamics of soft condensed matter. Topics and emphasis vary.

PHYS 688. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 689. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 690. Theory of Condensed Matter. 4 Credits.
Advanced topics include quantum and statistical description of many-particle systems, electronic structure, elementary excitations in solids and fluids, critical phenomena, statics and dynamics of soft condensed matter. Topics and emphasis vary.

PHYS 691. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 692. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 693. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.

PHYS 694. Quantum Optics and Laser Physics. 4 Credits.
Nonlinear optical processes and quantum statistical properties of light produced by such processes, laser theory, wave mixing processes, optical Bloch equations, field quantization, photon statistics, cooperative emissions. Sequence.