Mathematics and Computer Science (BA/ BS)

Arkady Vaintrob and Christopher B. Wilson, Advisors

Students who want training in both mathematics and computer science can declare a joint mathematics and computer science major. This allows them to develop skills and knowledge in both fields. The program develops team players prepared for information-based jobs. MACS students graduate with the tools to analyze complex problems and to compute the answers to them.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- Demonstrate proficiency in the main areas of computer science, including data structures and algorithms, computer systems, programming languages, and software development.
- Draw on broad knowledge of computer science to design, implement, and test software solutions to problems in a variety of areas.
- Demonstrate in-depth understanding of some area of computer science (theoretical foundations, computer systems, software development).
- Demonstrate proficiency with the calculational techniques and applications of calculus and linear algebra.
- Read and write mathematical proofs, producing arguments that are logically and syntactically correct.
- Demonstrate an in-depth understanding of some area of mathematics.
- Communicate and collaborate with others and express ideas orally and in writing.

Mathematics and Computer Science Major Requirements

The requirements for the mathematics and computer science (MACS) major fall into four categories: mathematics, computer science, writing, and science, with 44 credits taken in mathematics, 40 credits in computer science, and 16 credits (science and writing) in other departments.

Computer Science I (CS 210), Computer Science II (CS 211), Computer Science III (CS 212), Elements of Discrete Mathematics I (MATH 231), and Elements of Discrete Mathematics II (MATH 232) must be passed with grades of B - or better before students can take the upper-division core courses. Courses required for the major must be taken for a letter grade. Upper-division courses must be passed with a grade of C- or better.

Code	Title	Credits
Core Courses		
CS 210-212	Computer Science I-III	12
MATH 231-232	Elements of Discrete Mathematics I-II	8
MATH 251-253	Calculus I-III	12
or MATH 261- Calculus with Theory I-III 263		

Mathematics Requirements

Select one of the following:
MATH 316 Fundamentals of Analysis I
MATH 347 Fundamentals of Number Theory I
MATH 391 Fundamentals of Abstract Algebra I
MATH 341-342 Elementary Linear Algebra 8
MATH 351-352 Elementary Numerical Analysis I-II 8
or MATH 461- Introduction to Mathematical Methods of Statistics I-II 462
Upper-level mathematics course ${ }^{1} 4$
Computer Science
CS 313 Intermediate Data Structures 4
CS 314 Computer Organization 4
CS 315 Intermediate Algorithms 4
CS $425 \quad$ Principles of Programming Languages 4
Select one of the following: 4

CS 322	Introduction to Software Engineering
CS 330	C/C++ and Unix
CS 420	Automata Theory
CS 422	Software Methodology I

Two other upper-division CS courses ${ }^{2} \quad 8$
Writing Requirements
WR 320 Scientific and Technical Writing 4
or WR 321 Business Communications
Science Requirements
Select 12 credits from the following:
Biology ${ }^{3}$
BI 211 General Biology I: Cells
\& BI 213 and General Biology III: Ecology and
Evolution
or BI 211- General Biology I-II
212
Chemistry ${ }^{3}$
CH 111
Introduction to Chemical Principles
or CH 113 The Chemistry of Sustainability
or CH 221 General Chemistry I
or CH 224H Advanced General Chemistry I
CH 221-223 General Chemistry or CH 224 H -Honors General Chemistry 226H
Geography
GEOG 141 The Natural Environment
Select two of the following:
GEOG 321 Climatology
GEOG 322 Geomorphology
GEOG 323 Biogeography
Earth Sciences
ERTH 201 Dynamic Planet Earth
ERTH 202 Earth's Surface and Environment
ERTH 203 History of Life
Physics ${ }^{3}$
PHYS 201- General Physics
203

or PHYS 25 -Foundations of Physics I
253

Additional Requirements

Students must earn no grade below a B-in required lower-division mathematics and computer science courses-Computer Science I (CS 210), Computer Science II (CS 211), Computer Science III (CS 212), Elements of Discrete Mathematics I (MATH 231), Elements of Discrete Mathematics II (MATH 232)—for automatic advancement to upperdivision computer science courses. At least 12 of the mathematics upperdivision credits applied to the degree must be taken in residence at the university. The science courses may be taken pass/no pass (P / N) or for letter grades.

Major Progress Review and Major in Good Standing

Each major must meet with a CS advisor to file a Major Progress Review form after completing 12 credits of the upper-division core, including at least one course from each department. Mathematics and computer science courses and at least 8 credits of upper-division CS courses used to satisfy upper-division major requirements must be taken for letter grades and passed with grades of C - or better. At least 12 of the upper-division mathematics credits and 12 of the upper-division computer science credits applied to the degree must be taken in residence at the university. A student who receives two grades below C - in the upperdivision core or three grades below C - in any upper-division courses may be removed from the major.

Code	Title	Credits
MATH 316	Fundamentals of Analysis I	4
MATH 341	Elementary Linear Algebra	4
MATH 342	Elementary Linear Algebra	4
CS 313	Intermediate Data Structures	4
CS 314	Computer Organization	4
CS 315	Intermediate Algorithms	4
CS 425	Principles of Programming Languages	4
One of the following:		
CS 330	C/C++ and Unix	4
CS 420	Automata Theory	4
CS 422	Software Methodology I	4

Honors Program

Both of the cooperating departments offer departmental honors programs to their undergraduate majors. After obtaining advance approval from both of their advisors, students in the joint degree program are eligible to attain honors in mathematics and computer science by meeting the honors requirements of either department, including writing a thesis.

Four-Year Degree Plan

The degree plan shown is only a sample of how students may complete their degrees in four years. There are alternative ways. Students should consult their advisor to determine the best path for them.

Bachelor of Arts in Mathematics and Computer Science

Course	Title	Credits Milestones
First Year		
Fall		
CS 122	Introduction to Programming and Problem Solving	4
MATH $112 Z$	Precalculus II: Trigonometry	4
WR 121Z	Composition I	4
First term of second-year second-language sequence		4
	Credits	16
Winter		
CS 210	Computer Science I	4
MATH 231	Elements of Discrete Mathematics I	4
WR $122 Z$ or WR 123	Composition II or College Composition III	4
Second term of second-year second-language sequence		4
	Credits	16
Spring		
CS 211	Computer Science II	4
MATH 232	Elements of Discrete Mathematics II	4
Core-education course in arts and letters		4
Third term of second-year second-language sequence		4
	Credits	16
	Total Credits	48
Course	Title	Credits Milestones
Second Year		
Fall		
CS 212	Computer Science III	4
MATH 251 or MATH 246 or MATH 261	Calculus I or Calculus for the Biological Sciences I or Calculus with Theory I	4
First course of	f additional science sequence	4
Core-education	n course in social science	4
	Credits	16
Winter		
CS 313	Intermediate Data Structures	4

MATH 252 Calculus II or MATH 247 or Calculus for the Biological or II MATH 262 or Calculus with Theory II	4
Second course of additional science sequence	4
Core-education arts and letters	4
Credits	16
Spring	
CS 315 Intermediate Algorithms	4
MATH 253 Calculus III or or Calculus with Theory III MATH 263	4
Third course of additional science sequence	4
Core-education social science	4
Credits	16
Total Credits	48

Course Title Credits Milestones

Third Year		
Fall		4
CS 314	Computer Organization	4
MATH 316	Fundamentals of Analysis I	
or	or Fundamentals of Number Theory I	
MATH 347	or Fundamentals of Abstract Algebra	
or	I	
MATH 391		
CS 322	Introduction to Software Engineering	4
Core-education course in arts and letters	4	

CS 322 Introduction to Software Engineering 4
MATH 341 Elementary Linear Algebra 4
Core-education course in social science 4satisfies cultural literacy requirement

	Credits	16
Spring		
CS 425	Principles of Programming Languages	4
MATH 342	Elementary Linear Algebra	4
Core-education course in social science that also satisfies cultural literacy requirement		4
Elective course		4
	Credits	16
	Total Credits	48

Course Title Credits Milestones

Fourth Year

Fall

MATH 351	Elementary Numerical Analysis I	
or		
MATH 461	or Introduction to Mathematical Methods of Statistics I	4
Upper-division elective course with CS subject code	4	
Elective course	4	
Credits	$\mathbf{1 2}$	

Bachelor of Science in Mathematics and Computer Science

Course	Title	Credits Milestones
First Year		
Fall		
MATH $112 Z$	Precalculus II: Trigonometry	4
CS 122	Introduction to Programming and Problem Solving	4
WR 121Z	Composition I	4
Core-education course in arts and letters		4
	Credits	16
Winter		
MATH 231	Elements of Discrete Mathematics I	4
CS 210	Computer Science I	4
$\begin{aligned} & \text { WR } 122 Z \\ & \quad \text { or WR } 123 \end{aligned}$	Composition II or College Composition III	4
Core-education course in social science		4
	Credits	16
Spring		
MATH 232	Elements of Discrete Mathematics II	4
CS 211	Computer Science II	4
Core-education course in arts and letters		4
Core-education course in social science		4
	Credits	16
	Total Credits	48
Course	Title	Credits Milestones
Second Year		
Fall		
MATH 251	Calculus I	4
CS 212	Computer Science III	4
Core-education course in arts and letters also satisfies a cultural literacy requirement		4
First course of additional science sequence		4
	Credits	16
Winter		
CS 313	Intermediate Data Structures	4

MATH 247 or MATH 252 or MATH 262	Calculus for the Biological Sciences II or Calculus II or Calculus with Theory II	4
Second cours	e of additional science sequence	4
Core-educatio a cultural litera	course in social science also satisfies acy requirement	4
	Credits	16
Spring		
CS 315	Intermediate Algorithms	4
MATH 253 or MATH 263	Calculus III or Calculus with Theory III	4
Third course of additional science sequence		4
Core-education course in social science		4
	Credits	16
	Total Credits	48
Course	Title	Credits Milestones
Third Year		
Fall		
CS 314	Computer Organization	4
MATH 316 or MATH 347 or MATH 391	Fundamentals of Analysis I or Fundamentals of Number Theory I or Fundamentals of Abstract Algebra I	4
CS 322	Introduction to Software Engineering	4
Core-educatio	n course in arts and letters	4
	Credits	16
Winter		
CS 322	Introduction to Software Engineering	4
MATH 341	Elementary Linear Algebra	4
Elective courses		8
	Credits	16
Spring		
CS 425	Principles of Programming Languages	4
MATH 342	Elementary Linear Algebra	4
Elective courses		8
	Credits	16
	Total Credits	48
Course	Title	Credits Milestones
Fourth Year		
Fall		
Elective course with a CS subject code		4
MATH 351 or MATH 461	Elementary Numerical Analysis I or Introduction to Mathematical Methods of Statistics I	4
Elective cours		4
	Credits	12
Winter		
Elective course with a CS subject code		4
MATH 352	Elementary Numerical Analysis II	4

or or Introduction to Mathematical MATH 462 Methods of Statistics II	
Elective course	4
Credits	12
Spring	
Elective course with MATH subject code	4
$\begin{array}{cc}\text { WR } 320 & \text { Scientific and Technical Writing } \\ \text { or WR } 321 & \text { or Business Communications }\end{array}$	4
Elective course	4
Credits	12
Total Credits	36

