Chemistry (BA/BS)

The Department of Chemistry and Biochemistry offers majors in chemistry and biochemistry. Biochemistry majors complete an integrated, rigorous program that includes foundational course work in chemistry and biochemistry and additional course work in related fields. Undergraduate majors benefit from taking graduate courses in synthetic modeling, physical chemistry, materials, computational chemistry, biochemistry, molecular biology, and modern instrumental techniques.

The American Chemistry Society-certified degree emphasizes laboratory experience and the development of professional skills. A unique strength of the department is the opportunity for undergraduates to participate in the activities of a dynamic research group that considers problems extending well beyond textbook instruction.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- Coursework: Students will demonstrate an understanding of the fundamental concepts in the basic areas of the discipline (organic, inorganic, analytical, physical, and biochemical). Students will demonstrate a firm foundation in the conceptual, quantitative, and computational thinking that underlies the theories and models that form the basis for reasoning about molecular systems. Students will be able to connect this theoretical understanding to the experimental methods used to test those theories and models. Students will also have opportunities to obtain in-depth knowledge in multiple areas of the discipline. The foundational and in-depth coursework will be aligned with the most recent American Chemical Society Guidelines for Chemistry Programs (https://www.acs.org/education/policies/acs-approval-program.html).
- Instructional Laboratory: Students will demonstrate proficiency in laboratory techniques and the use of modern instrumentation. Students will be able to carry out experiments in the laboratory, accurately record data and observations, and be able to analyze the results of experiments. Students will be able to handle, synthesize, purify, and characterize new and existing substances. This includes knowing the proper procedures and regulations for the safe handling, use and disposal of chemicals.
- Research: Students will employ critical thinking and the scientific method to design, carry out, record, analyze and communicate the results of chemical/biochemical experiments. This includes the ability to identify, or create an appropriate model, formulate a hypothesis, choose an appropriate set of tools and techniques, and design an experiment that tests the hypothesis and analyze the results from that experiment drawing sound scientific conclusions from the results obtained. Students must be able to locate, identify and critically evaluate the chemical/biochemical literature.
- Communication: Students will demonstrate effective scientific communication skills, both orally and in writing, to a range of audience levels and for a variety of purposes. Students will understand how scientific information is shared between peers in modern science, including responsible conduct for acknowledging prior and current contributions.
- Professional Skills: Students will develop the interpersonal skills to function cooperatively in a team setting. Students will successfully pursue their career objectives in advanced education in professional and/or graduate schools, in a scientific career in government or
industry, in a teaching career in the school systems, or in a related career following graduation.
- Ethics: Students will be able to understand and apply ethics and values to all professional activities. Students will demonstrate an awareness of the benefits and impacts of chemistry related to the environment, society, and other disciplines outside the scientific community. Students will be prepared to contribute solutions to society's challenges at the intersection of science and society.

The program described below is the recommended curriculum for chemistry majors. It includes courses in chemistry and related fields. Courses taken to satisfy major requirements must be passed with grades of C - or better. Variations in courses and order may be worked out in consultation with an advisor. Advisors can also provide lists of substitute courses and courses that are recommended but not required.

Students are encouraged to participate in CH 401 Research: [Topic].

Chemistry Major Requirements

Code	Title	Credits		
Chemistry Courses				
CH 224H-226H				
or CH 221-				
223			\quad	Honors General Chemistry
:---	:---	---:		
General Chemistry	$\quad 12$			

Total Credits 114-120

Advanced Electives

Code Title Credits

Advanced electives (e.g., three courses or 9 credits of 9-12 research or one course and 6 credits of research) chosen from the following: ${ }^{1}$

CH 401	Research: [Topic]
CH 420	Physical Organic Chemistry I
CH 421	Physical Organic Chemistry II
CH 431	Inorganic Chemistry

CH 432	Inorganic Chemistry
CH 433	Inorganic Chemistry
CH 441	Quantum Chemistry
CH 442	Quantum Chemistry and Spectroscopy
CH 443	Quantum Chemistry and Spectroscopy
CH 445	Statistical Mechanics
CH 446	Chemical Kinetics: [Topic]
CH 447	Computational Chemistry
CH 451	Advanced Organic-Inorganic Chemistry
CH 452	Advanced Organic Chemistry- Stereochemistry and Reactions
CH 454	Advanced Electrochemistry
CH 461	Biochemistry
CH 462	Biochemistry
CH 463	Biochemistry
CH 464	RNA Biochemistry
CH 465	Physical Biochemistry
CH 466	Structural Biochemistry
CH 467	Biochemistry Laboratory
ERTH 471	Thermodynamic Geochemistry
ERTH 472	Aqueous-Mineral-Gas Equilibria
ERTH 473	Isotope Geochemistry
PHYS 411-	Mechanics, Electricity, and Magnetism
413	
PHYS 414-	Quantum Physics
415	

Total Credits

1 Other courses may be included with advisor approval.

Honors Program

The criteria used for the selection of students who graduate with departmental honors in chemistry or biochemistry are as follows:

1. Grade point average (GPA) of at least 3.50 in all graded courses
2. Suitable accomplishment in undergraduate chemical or related research. Specifically, the student must pursue a research problem for one academic year or longer and be recommended as worthy of honors by the faculty supervisor. Positive accomplishment and publishable results are expected but not required
3. Endorsement for a major with honors by a member of the university faculty
4. Completion of all course requirements for the $B S$ degree in chemistry (waivers or substitutions allowed with approval)

Four-Year Degree Plan

The degree plan shown is only a sample of how students may complete their degrees in four years. There are alternative ways. Students should consult their advisor to determine the best path for them.

Bachelor of Arts in Chemistry

Course	Title	Credits Milestones
First Year		
Fall		
MATH $112 Z$ or MATH 251	Precalculus II: Trigonometry or Calculus I	4
WR 121Z	Composition I	4
$\text { CH } 221$ or CH 224H	General Chemistry I or Advanced General Chemistry I	4
$\begin{aligned} & \mathrm{CH} 227 \\ & \quad \text { or } \mathrm{CH} 237 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
	Credits	14
Winter		
WR 123 or WR $122 Z$	College Composition III or Composition II	4
$\begin{aligned} & \mathrm{CH} 222 \\ & \quad \text { or } \\ & \text { CH } 225 \mathrm{H} \end{aligned}$	General Chemistry II or Advanced General Chemistry II	4
$\begin{aligned} & \mathrm{CH} 228 \\ & \quad \text { or } \\ & \text { CH } 226 \mathrm{H} \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry III	2
MATH 251 or MATH 252	Calculus I or Calculus II	4
	Credits	14
Spring		
$\text { CH } 223$ or CH 226H	General Chemistry III or Advanced General Chemistry III	4
$\begin{aligned} & \mathrm{CH} 229 \\ & \quad \text { or } \mathrm{CH} 239 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
MATH 252 or MATH 253	Calculus II or Calculus III	4
General-educa	ation course in arts and letters	4
Meet with an advisor if interested in undergraduate research.		
All majors take at the end of the	e the American Chemical Society Exam the academic year.	

	Credits	14
	Total Credits	42
Course	Title	Credits Milestones
Second Year		
Fall		
PHYS 201 or PHYS 251	General Physics or Foundations of Physics I	4
PHYS 204 or PHYS 290	Introductory Physics Laboratory or Foundations of Physics Laboratory	2

CH 337	Organic Chemistry Laboratory	3
CH 341	Majors Track Organic Chemistry I	4
Students should meet with an advisor to create an individual development plan		
	Credits	13
Winter		
PHYS 202 or PHYS 252	General Physics or Foundations of Physics I	4
$\begin{aligned} & \text { PHYS } 205 \\ & \text { or } \\ & \text { PHYS } 290 \end{aligned}$	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
CH 342	Majors Track Organic Chemistry II	4
CH 348	Organic Chemistry Laboratory for Majors	4
	Credits	14
Spring		
$\begin{aligned} & \text { PHYS } 203 \\ & \text { or } \\ & \text { PHYS } 253 \end{aligned}$	General Physics or Foundations of Physics I	4
PHYS 206 or PHYS 290	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
CH 343	Majors Track Organic Chemistry III	4
CH 349	Organic Chemistry Lab for Majors	4
General-education course in social science		4
Majors take the American Chemical Society Exam at the end of the academic year.		
Students interested in undergraduate research should make arrangements to start.		
	Credits	18
	Total Credits	45
Course	Title	esto
Third Year		
Fall		
CH 411	Physical Chemistry	4
CH 417	Physical Chemistry Laboratory	4
MATH 256 or MATH 281	Introduction to Differential Equations or Several-Variable Calculus I	4
First term of f only)	first-year second-language sequence (BA	5
Students should meet with an advisor to review their four-year plan and individual development plan		
	Credits	17
Winter		
CH 412	Physical Chemistry	4
CH 418	Physical Chemistry Laboratory	4
Second term of first-year second-language sequence (BA only)		5
General-education course that also satisfies multicultural requirement		4
	Credits	17

Bachelor of Science in Chemistry

Course	Title	Credits Milestones
First Year		
Fall		
MATH 112Z	Precalculus II: Trigonometry	
or	or Calculus I	4
MATH 251		4
WR 121Z	Composition I	4
CH 221	General Chemistry I	
or CH 224H	or Advanced General Chemistry I	

400 -level course in chemistry, earth sciences, or physics	4
General-education course in arts and letters	4
General-education course that also satisfies multicultural requirement	4
Credits	14
Winter	
CH 401 Research: [Topic]	2
400-level course in chemistry, earth sciences, or physics	4
General-education course that also satisfies multicultural requirement	4
General-education course in social science	4
Credits	14
Spring	
CH 401 Research: [Topic]	2
400-level course in chemistry, earth sciences, or physics	4
General-education course in arts and letters	4
Credits	10
Total Credits	38

