Biochemistry (BA/BS)

The Department of Chemistry and Biochemistry offers majors in chemistry and biochemistry. Biochemistry majors complete an integrated, rigorous program that includes foundational course work in chemistry and biochemistry and additional course work in related fields. Undergraduate majors benefit from taking graduate courses in synthetic modeling, physical chemistry, materials, computational chemistry, biochemistry, molecular biology, and modern instrumental techniques.

The American Chemistry Society-certified degree emphasizes laboratory experience and the development of professional skills. A unique strength of the department is the opportunity for undergraduates to participate in the activities of a dynamic research group that considers problems extending well beyond textbook instruction.

Program Learning Outcomes

Upon successful completion of this program, students will be able to:

- Coursework: Students will demonstrate an understanding of the fundamental concepts in the basic areas of the discipline (organic, inorganic, analytical, physical, and biochemical). Students will demonstrate a firm foundation in the conceptual, quantitative, and computational thinking that underlies the theories and models that form the basis for reasoning about molecular systems. Students will be able to connect this theoretical understanding to the experimental methods used to test those theories and models. Students will also have opportunities to obtain in-depth knowledge in multiple areas of the discipline. The foundational and in-depth coursework will be aligned with the most recent American Chemical Society Guidelines for Chemistry Programs (https://www.acs.org/education/policies/acs-approval-program.html).
- Instructional Laboratory: Students will demonstrate proficiency in laboratory techniques and the use of modern instrumentation. Students will be able to carry out experiments in the laboratory, accurately record data and observations, and be able to analyze the results of experiments. Students will be able to handle, synthesize, purify, and characterize new and existing substances. This includes knowing the proper procedures and regulations for the safe handling, use and disposal of chemicals.
- Research: Students will employ critical thinking and the scientific method to design, carry out, record, analyze and communicate the results of chemical/biochemical experiments. This includes the ability to identify, or create an appropriate model, formulate a hypothesis, choose an appropriate set of tools and techniques, and design an experiment that tests the hypothesis and analyze the results from that experiment drawing sound scientific conclusions from the results obtained. Students must be able to locate, identify and critically evaluate the chemical/biochemical literature.
- Communication: Students will demonstrate effective scientific communication skills, both orally and in writing, to a range of audience levels and for a variety of purposes. Students will understand how scientific information is shared between peers in modern science, including responsible conduct for acknowledging prior and current contributions.
- Professional Skills: Students will develop the interpersonal skills to function cooperatively in a team setting. Students will successfully pursue their career objectives in advanced education in professional and/or graduate schools, in a scientific career in government or
industry, in a teaching career in the school systems, or in a related career following graduation
- Ethics: Students will be able to understand and apply ethics and values to all professional activities. Students will demonstrate an awareness of the benefits and impacts of chemistry related to the environment, society, and other disciplines outside the scientific community. Students will be prepared to contribute solutions to society's challenges at the intersection of science and society.

Courses taken to satisfy major requirements must be passed with grades of $\mathrm{C}-$ or better. Variations in courses and order may be worked out in consultation with an advisor.

Students who plan to attend graduate school should include research in their advanced work. If chemical research is included as part of the advanced work, at least 6 credits of CH 401 Research: [Topic] must be completed. Students who plan to apply to medical schools should investigate the need for a physics laboratory course that is not included in this curriculum.

Biochemistry Major Requirements

Code	Title	Credits
Required Chemistry Courses		
$\begin{aligned} & \mathrm{CH} 224 \mathrm{H}-226 \mathrm{H} \\ & \text { or CH } 221- \\ & 223 \end{aligned}$	Honors General Chemistry General Chemistry	12
$\begin{aligned} & \text { CH } 227-229 \\ & \text { or CH } 237- \\ & 239 \end{aligned}$	General Chemistry Laboratory Advanced General Chemistry Laboratory	6
CH 337	Organic Chemistry Laboratory	3
CH 341-343	Majors Track Organic Chemistry I-III	12
CH 348	Organic Chemistry Laboratory for Majors	4
CH 411-412	Physical Chemistry	8
CH 461-463	Biochemistry	12
CH 467	Biochemistry Laboratory	4
Related Science Requirements		
MATH 251-253	Calculus I-III	12
$\begin{aligned} & \text { PHYS 201-203 } \\ & \text { or PHYS 251- } \\ & 253 \end{aligned}$	General Physics Foundations of Physics I	12
Bl 281 H	Honors Biology I: Cells, Biochemistry and Physiology	5
Bl 282 H	Honors Biology II: Genetics and Molecular Biology	5
BI 320	Molecular Genetics	4
Physical Laboratory Requirement		
Select one of the	following:	3-8
$\begin{aligned} & \text { PHYS 204- } \\ & 206 \end{aligned}$	Introductory Physics Laboratory	
PHYS 290	Foundations of Physics Laboratory (three terms)	
CH 417 \& CH 418	Physical Chemistry Laboratory and Physical Chemistry Laboratory ${ }^{1}$	
Advanced Laboratory Requirement		
Select one of the	following:	4-6
CH 417	Physical Chemistry Laboratory ${ }^{1}$	
CH 418	Physical Chemistry Laboratory ${ }^{1}$	

CH 419	Physical Chemistry Laboratory
CH 429	Instrumental Analysis
CH 401	Research: [Topic] (three terms) ${ }^{2}$

Advanced Biochemistry Electives

Select two of the following:

CH 464	RNA Biochemistry
CH 465	Physical Biochemistry
CH 466	Structural Biochemistry
CH 468	Cellular Biochemistry

Other Advanced Electives

See the table below ${ }^{1}$

Total Credits
126-133
1 Courses cannot be used to satisfy requirements in more than one area.
2 Minimum of 6 credits of CH 401 and a written report are required for Research.

Other Advanced Electives

Code Title Credits

Three approved 400 -level courses in chemistry and biology. Students may use one approved 300-level biology course (BI 322, BI 328 , or BI 360) as one of the three advanced electives. ${ }^{1}$

CH 413	Physical Chemistry
CH 417	Physical Chemistry Laboratory
CH 418	Physical Chemistry Laboratory
CH 419	Physical Chemistry Laboratory
CH 420	Physical Organic Chemistry I
CH 421	Physical Organic Chemistry II
CH 429	Instrumental Analysis
CH 431	Inorganic Chemistry
CH 432	Inorganic Chemistry
CH 433	Inorganic Chemistry
CH 441	Quantum Chemistry
CH 442	Quantum Chemistry and Spectroscopy
CH 443	Quantum Chemistry and Spectroscopy
CH 445	Statistical Mechanics
CH 446	Chemical Kinetics: [Topic]
CH 447	Computational Chemistry
CH 451	Advanced Organic-Inorganic Chemistry
CH 452	Advanced Organic Chemistry-
	Stereochemistry and Reactions
BI 322	Cell Biology
or BI 328	Developmental Biology
or BI 360	Neurobiology
BI 422	Protein Toxins in Cell Biology
BI 423	Human Molecular Genetics
BI 426	Genetics of Cancer
BI 428	Developmental Genetics
BI 433	Bacterial-Host Interactions
BI 461	Systems Neuroscience

BI 466	Developmental Neurobiology
BI 484	Molecular Evolution

1 See advisor for complete list. Courses used to satisfy the physical and advanced laboratory requirements cannot also be used as an advanced elective.

Honors Program

The criteria used for the selection of students who graduate with departmental honors in chemistry or biochemistry are as follows:

1. Grade point average (GPA) of at least 3.50 in all graded courses
2. Suitable accomplishment in undergraduate chemical or related research. Specifically, the student must pursue a research problem for one academic year or longer and be recommended as worthy of honors by the faculty supervisor. Positive accomplishment and publishable results are expected but not required
3. Endorsement for a major with honors by a member of the university faculty
4. Completion of all course requirements for the BS degree in chemistry (waivers or substitutions allowed with approval)

Four-Year Degree Plan

The degree plan shown is only a sample of how students may complete their degrees in four years. There are alternative ways. Students should consult their advisor to determine the best path for them.

Bachelor of Arts in Biochemistry

	Title	Credits Milestones
First Year		
Fall		
$\text { MATH } 112 Z$ or MATH 251	Precalculus II: Trigonometry or Calculus I	4
WR 121Z	Composition I	4
$\text { CH } 221$ or CH 224H	General Chemistry I or Advanced General Chemistry I	4
$\begin{aligned} & \mathrm{CH} 227 \\ & \quad \text { or CH } 237 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
	Credits	14
Winter		
WR 123 or WR $122 Z$	College Composition III or Composition II	4
$\begin{aligned} & \mathrm{CH} 222 \\ & \quad \text { or } \\ & \text { CH } 225 \mathrm{H} \end{aligned}$	General Chemistry II or Advanced General Chemistry II	4
$\begin{aligned} & \mathrm{CH} 228 \\ & \quad \text { or CH } 238 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
$\text { MATH } 251$ or MATH 252	Calculus I or Calculus II	4
Meet with an advisor to prepare a four-year plan		

Spring			Course	Title	Credits Milestones
$\begin{aligned} & \mathrm{CH} 223 \\ & \text { or } \\ & \text { CH } 226 \mathrm{H} \end{aligned}$	General Chemistry III or Advanced General Chemistry III	4	Third Year Fall		
$\begin{aligned} & \mathrm{CH} 229 \\ & \quad \text { or } \mathrm{CH} 239 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2	or PHYS 25	or Foundations of Physics I	
MATH 252 or MATH 253	Calculus II or Calculus III	4	$\begin{aligned} & \text { PHYS } 204 \\ & \text { or } \\ & \text { PHYS } 290 \end{aligned}$	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
			CH 461	Biochemistry	4
General-education course in social science that also satisfies multicultural requirement		4	CH 467	Biochemistry Laboratory	4
Meet with an advisor if interested in undergraduate research.			First term of first-year second-language requirement (BA only)		
All majors take the American Chemical Society Exam at the end of the academic year.			Students should meet with an advisor to review their four-year plan and individual development plan		
	Credits	14	Winter	Credits	19
Course	Total Credits Title	Credits Milestones	PHYS 202 or PHYS 25	General Physics or Foundations of Physics I	4
Second Year Fall			PHYS 205 or	Introductory Physics Laboratory or Foundations of Physics	2
MATH 253 or MATH 256 or MATH 281	Calculus III or Introduction to Differential Equations or Several-Variable Calculus I	4	PHYS 290	Laboratory	
			CH 462	Biochemistry	4
			Second term of first-year second-language requirement (BA only)		5
Bl 281 H	Honors Biology I: Cells, Biochemistry and Physiology	5	General-education course in social science		4
				Credits	19
CH 337	Organic Chemistry Laboratory	3	Spring		
CH 341	Majors Track Organic Chemistry I	4	PHYS 203	General Physics	4
Students should meet with an advisor to create an individual development plan			PHYS 253		
Winter	Credits	16	PHYS 206 or PHYS 290	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
MATH 253	Calculus III	4	CH 463	Biochemistry	4
BI 282H	Honors Biology II: Genetics and Molecular Biology	5	400 -level course in chemistry or biology		4
CH 342	Majors Track Organic Chemistry II	4	Third term of first-year second-language requirement (BA only)		5
CH 348	Organic Chemistry Laboratory for Majors	4		Credits	19
	Credits	17		Total Credits	57
Spring			Course	Title	Credits Milestones
BI 320	Molecular Genetics	4	Fourth Year		
CH 343	Majors Track Organic Chemistry III	4	Fall		
General-education course in arts and letters that also satisfies multicultural requirement		4	CH 411	Physical Chemistry	4
			CH 417	Physical Chemistry Laboratory	4
General-education course in social science		4	400-level course in chemistry or biology		4
Majors take the American Chemical Society Exam at the end of the academic year.			First term of second-year second-language requirement (BA only)		4
Students interested in undergraduate research should make arrangements to start.			General-education course in arts and letters		4
	Credits	16	Winter	Credits	20
Total Credits		49	CH 412	Physical Chemistry	4
		400-level cou	ses in chemistry or biology	8	

Second term of second-year second-language requirement (BA only)	4
General-education course in arts and letters	4
Credits	20
Spring	
400 -level course in chemistry or biology	4
Third term of second-year second-language requirement (BA only)	4
General education course in social science	4
General education course in arts and letters	4
Apply for degree in DuckWeb by end of fourth week of spring term	
Credits	16
Total Credits	56

Bachelor of Science in Biochemistry

Course	Title	Credits Milesto
First Year		
Fall		
MATH $112 Z$ or MATH 251	Precalculus II: Trigonometry or Calculus I	4
WR 121Z	Composition I	4
$\begin{aligned} & \mathrm{CH} 221 \\ & \text { or } \\ & \mathrm{CH} 224 \mathrm{H} \end{aligned}$	General Chemistry I or Advanced General Chemistry I	4
$\begin{aligned} & \mathrm{CH} 227 \\ & \quad \text { or CH } 237 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
	Credits	14
Winter		
WR 123 or WR $122 Z$	College Composition III or Composition II	4
$\begin{aligned} & \mathrm{CH} 222 \\ & \quad \text { or } \\ & \mathrm{CH} 225 \mathrm{H} \end{aligned}$	General Chemistry II or Advanced General Chemistry II	4
$\begin{aligned} & \mathrm{CH} 228 \\ & \quad \text { or CH } 238 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
MATH 251 or MATH 252	Calculus I or Calculus II	4
Meet with an advisor to prepare a four-year plan		
	Credits	14
Spring		
CH 223 or CH 226H	General Chemistry III or Advanced General Chemistry III	4
$\begin{aligned} & \mathrm{CH} 229 \\ & \quad \text { or CH } 239 \end{aligned}$	General Chemistry Laboratory or Advanced General Chemistry Laboratory	2
MATH 252 or MATH 253	Calculus II or Calculus III	4

General-education course in arts and letters 4 Meet with an advisor if interested in undergraduate research.
All majors take the American Chemical Society Exam at the end of the academic year.

	Credits	$\mathbf{1 4}$
	Total Credits	$\mathbf{4 2}$
Course Second Year	Title	Credits Milestones
Fall		
MATH 253	Calculus III	4
BI 281H	Honors Biology I: Cells, Biochemistry and Physiology	5
CH 337	Organic Chemistry Laboratory	3
CH 341	Majors Track Organic Chemistry I	4

Students should meet with an advisor to create an individual development plan

Credits	16

Winter

MATH 253	Calculus III	4
BI 282H	Honors Biology II: Genetics and	5
	Molecular Biology	
CH 342	Majors Track Organic Chemistry II	4
CH 348	Organic Chemistry Laboratory for Majors	4
	Credits	$\mathbf{1 7}$

| Spring | |
| :--- | :--- | ---: |
| BI $320 \quad$ Molecular Genetics | 4 |
| CH $343 \quad$ Majors Track Organic Chemistry III | 4 |
| General-education course in arts and letters | 4 |
| General-education course in social science | |
| Majors take the American Chemical Society Exam at | |
| the end of the academic year. | |
| Students interested in undergraduate research should | |
| make arrangements to start. | |

	Credits	16
	Total Credits	49
Course	Title	Credits Milestones

Third Year

Fall

PHYS 201 or PHYS 251	General Physics or Foundations of Physics I	4
PHYS 204 or PHYS 290	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
CH 461	Biochemistry	4
CH 467	Biochemistry Laboratory	4

Students should meet with an advisor to review their
four-year plan and individual development plan
Credits
14

Winter		
$\text { PHYS } 202$ or PHYS 252	General Physics or Foundations of Physics I	4
PHYS 205 or PHYS 290	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
CH 401	Research: [Topic]	2
CH 462	Biochemistry	4
General-education course in social science		4
	Credits	16
Spring		
$\text { PHYS } 203$ or PHYS 253	General Physics or Foundations of Physics I	4
PHYS 206 or PHYS 290	Introductory Physics Laboratory or Foundations of Physics Laboratory	2
CH 401	Research: [Topic]	2
CH 463	Biochemistry	4
General-educ	ation course in arts and letters	4
Students should meet with an advisor to review their four-year plan and individual development plan		
	Credits	16
	Total Credits	46
Course	Title	Credits Milestones
Fourth Year		
Fall		
CH 401	Research: [Topic]	1-21
CH 411	Physical Chemistry	4
400-level cou	rses in chemistry or biology	8
General-educ	ation course in arts and letters	4
	Credits	17-37
Winter		
CH 412	Physical Chemistry	4
400-level cou	rses in chemistry or biology	8
General-educ	ation course in social science	4
	Credits	16
Spring		
400-level cou	se in chemistry or biology	4
General educ	ation course in social science	4
Multicultural	ourses	8
Apply for degree in DuckWeb by end of fourth week of spring term		
	Credits	16
	Total Credits	49-69

