The Department of Chemistry and Biochemistry offers bachelor of arts and bachelor of science degrees with majors in chemistry or biochemistry. The department enjoys a strong national reputation.

The curriculum in chemistry provides broad knowledge of the field as a part of the liberal education offered by the College of Arts and Sciences. Chemistry course work is a sound foundation for students interested in advanced work in chemistry or related sciences, particularly such fields as biochemistry, geochemistry, materials science, and molecular biology.

Faculty

Mark Lonergan, professor (physical, materials science); director, Materials Science Institute. BS, 1990, Oregon; PhD, 1994, Northwestern. (1996)

George V. Nazin, assistant professor (physical). MS, 1999, Moscow Institute of Physics and Technology; PhD, 2007, California, Irvine. (2010)

Geraldine L. Richmond, Presidential Chair in Science; professor (physical, materials science). BS, 1975, Kansas State; PhD, 1980, California, Berkeley. (1985)

Tom H. Stevens, College of Arts and Sciences Distinguished Professor; Philip H. Knight Professor (biochemistry). BA, 1974, MS, 1976, San Francisco State; PhD, 1980, California Institute of Technology. (1982)

David R. Tyler, Charles J. and M. Monteith Jacobs Professor of Chemistry (inorganic, materials science). BS, 1975, Purdue; PhD, 1979, California Institute of Technology. (1985)

Special Staff

John Hardwick, courtesy senior instructor and senior research associate (molecular physics). AB, 1966, Princeton; PhD, 1972, Georgia Institute of Technology. (1985)

Emeriti

Ralph J. Barnhard, senior instructor emeritus. BS, 1959, Otterbein; MS, 1965, Oregon. (1966)

Frederick W. Dahlquist, professor emeritus. AB, 1966, Princeton; PhD, 1972, Georgia Institute of Technology. (1985)
Chemistry and Biochemistry

O. Hayes Griffith, professor emeritus. AB, 1960, California, Riverside; PhD, 1964, California Institute of Technology. (1965)

John F. W. Keana, professor emeritus. BA, 1961, Kalamazoo; PhD, 1965, Stanford. (1965)

James W. Long, senior instructor emeritus. BS, 1965, Washington (Seattle); PhD, 1969, California, Berkeley. (1978)

John A. Schellman, professor emeritus. AB, 1948, Temple; MA, 1949, PhD, 1951, Princeton. (1958)

Peter H. von Hippel, professor emeritus. BS, 1952, MS, 1953, PhD, 1955, Massachusetts Institute of Technology. (1967)

Raymond G. Wolfe Jr., professor emeritus. AB, 1942, MA, 1948, PhD, 1955, California, Berkeley. (1956)

The date in parentheses at the end of each entry is the first year on the University of Oregon faculty.

- Bachelor of Arts in Chemistry
- Bachelor of Arts in Biochemistry
- Bachelor of Science in Chemistry
- Bachelor of Science in Biochemistry
- Chemistry Minor
- Biochemistry Minor

Undergraduate Studies

One strength of the program is the opportunity undergraduates have to participate in the activities of a dynamic research group that considers problems extending well beyond textbook instruction. Major and nonmajor students alike can enjoy this experience of scientific inquiry. One to two years of preparatory course work typically precede the research experience. The department enrolls twenty to thirty undergraduate students each term in CH401 Research: [Topic].

Preparation

The high school preparation of a prospective chemistry major should include chemistry, physics, and a minimum of three years of mathematics. Those interested in biochemistry would also profit from biology courses in high school.

Two-year college students planning to transfer to the university to major in chemistry should prepare by taking courses equivalent to those outlined for the freshman and sophomore years.

The department offers two general-chemistry sequences, both of which lead to organic chemistry, the second-year sequence in chemistry.

General Chemistry Sequence Options

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH221–223</td>
<td>General Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>CH224H–226H</td>
<td>Honors General Chemistry</td>
<td>12</td>
</tr>
</tbody>
</table>

Each sequence covers the fundamentals of chemistry but uses a different approach and a textbook tailored to suit a student’s background in high school chemistry and mathematics.

Careers

Career opportunities for chemists are available in education, government, and industry (see the annual October issue of Chemical and Engineering News). A bachelor’s degree in chemistry provides a good background for advanced study in such fields as

- atmospheric science
- biochemistry
- biology
- environmental sciences
- forensic science
- geochemistry
- geological sciences
- pharmacy
- pharmacology
- physiology
- materials science
- medicine
- medicinal chemistry
- metallurgy
- molecular biology
- neuroscience
- oceanography

Chemists also find jobs in science writing, public relations, personnel, plant production, sales, management, safety management, market research, patent law, and financial analysis. The alumni newsletter, Chemistry News, has examples of careers UO majors have chosen. Follow the links on the department’s website.

Chemistry Major

The program described below is the recommended curriculum for chemistry majors. It includes courses in chemistry and related fields. Courses taken to satisfy major requirements must be passed with grades of C– or better. Variations in courses and order may be worked out in consultation with an advisor. Advisors can also provide lists of substitute courses and courses that are recommended but not required.

Students are encouraged to participate in CH401 Research: [Topic].

Bachelor of Arts Degree Requirements in Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H</td>
<td>Honors General Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>or CH221-223</td>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>CH227–229</td>
<td>General Chemistry Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>or CH237–239</td>
<td>Advanced General Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CH341–343</td>
<td>Majors Track Organic Chemistry I-III</td>
<td>12</td>
</tr>
<tr>
<td>CH337</td>
<td>Organic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CH348–349</td>
<td>Organic Chemistry Lab for Majors</td>
<td>8</td>
</tr>
<tr>
<td>CH411–413</td>
<td>Physical Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>CH417–419</td>
<td>Physical Chemistry Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>Advanced Electives (see Advanced Electives table)</td>
<td>9-12</td>
<td></td>
</tr>
</tbody>
</table>
Related Science Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH251–253</td>
<td>12</td>
</tr>
<tr>
<td>MATH256 & MATH281</td>
<td>8</td>
</tr>
<tr>
<td>PHYS251–253</td>
<td>12</td>
</tr>
<tr>
<td>PHYS290 or PHYS201–203</td>
<td>3-6</td>
</tr>
<tr>
<td>MATH256 & MATH281</td>
<td>8</td>
</tr>
<tr>
<td>PHYS251–253 or PHYS201–203</td>
<td>12</td>
</tr>
<tr>
<td>Electives (general-education, group-satisfying courses)</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Total Credits: 35-38

Advanced Electives

Advanced electives (e.g., three courses or 9 credits of research or one course and 6 credits of research) chosen from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH401</td>
<td>Research: [Topic]</td>
</tr>
<tr>
<td>CH420</td>
<td>Physical Organic Chemistry I</td>
</tr>
<tr>
<td>CH421</td>
<td>Physical Organic Chemistry II</td>
</tr>
<tr>
<td>CH431</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CH432</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CH433</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CH441</td>
<td>Quantum Chemistry</td>
</tr>
<tr>
<td>CH442</td>
<td>Quantum Chemistry and Spectroscopy</td>
</tr>
<tr>
<td>CH443</td>
<td>Quantum Chemistry and Spectroscopy</td>
</tr>
<tr>
<td>CH444</td>
<td>Chemical Thermodynamics</td>
</tr>
<tr>
<td>CH445</td>
<td>Statistical Mechanics</td>
</tr>
<tr>
<td>CH446</td>
<td>Chemical Kinetics: [Topic]</td>
</tr>
<tr>
<td>CH447</td>
<td>Computational Chemistry</td>
</tr>
<tr>
<td>CH452</td>
<td>Advanced Organic Chemistry—Stereochmistry and Reactions</td>
</tr>
<tr>
<td>CH461</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>CH462</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>CH463</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>CH464</td>
<td>RNA Biochemistry</td>
</tr>
<tr>
<td>CH465</td>
<td>Physical Biochemistry</td>
</tr>
<tr>
<td>CH467</td>
<td>Biochemistry Laboratory</td>
</tr>
<tr>
<td>GEOL471</td>
<td>Thermodynamic Geochemistry</td>
</tr>
<tr>
<td>GEOL472</td>
<td>Aqueous-Mineral-Gas Equilibria</td>
</tr>
<tr>
<td>GEOL473</td>
<td>Isotope Geochemistry</td>
</tr>
<tr>
<td>PHYS412–413</td>
<td>Mechanics, Electricity, and Magnetism</td>
</tr>
<tr>
<td>PHYS414–415</td>
<td>Quantum Physics</td>
</tr>
<tr>
<td>Electives (general-education, group-satisfying courses)</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Total Credits: 9-12

^1 Other courses may be included with advisor approval.

Sample Program for Chemistry Majors

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H</td>
<td>Honors General Chemistry</td>
</tr>
<tr>
<td>or 221–223</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH341–343</td>
<td>Majors Track Organic Chemistry I-III</td>
</tr>
<tr>
<td>CH337</td>
<td>Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>CH348</td>
<td>Organic Chemistry Laboratory for Majors</td>
</tr>
<tr>
<td>CH349</td>
<td>Organic Chemistry Lab for Majors</td>
</tr>
<tr>
<td>MATH256</td>
<td>Introduction to Differential Equations</td>
</tr>
<tr>
<td>MATH281</td>
<td>Several-Variable Calculus I</td>
</tr>
<tr>
<td>PHYS251–253 or PHYS201–203</td>
<td>Foundations of Physics I</td>
</tr>
<tr>
<td>Electives (general-education, group-satisfying courses)</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH429</td>
<td>Instrumental Analysis</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH227–229</td>
<td>General Chemistry Laboratory</td>
</tr>
<tr>
<td>or CH237–239</td>
<td>Advanced General Chemistry Laboratory</td>
</tr>
</tbody>
</table>

Total Credits: 171-194

Bachelor of Science Degree Requirements in Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H</td>
<td>Honors General Chemistry</td>
</tr>
<tr>
<td>or CH221–223</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>CH227–229</td>
<td>General Chemistry Laboratory</td>
</tr>
<tr>
<td>or CH237–239</td>
<td>Advanced General Chemistry Laboratory</td>
</tr>
</tbody>
</table>
Sample Program for Chemistry Majors

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H</td>
<td>12</td>
</tr>
<tr>
<td>or 221-223</td>
<td></td>
</tr>
<tr>
<td>CH227–229 or</td>
<td>6</td>
</tr>
<tr>
<td>237-239</td>
<td></td>
</tr>
<tr>
<td>MATH251–253</td>
<td>12</td>
</tr>
<tr>
<td>or PHYS251–253</td>
<td></td>
</tr>
<tr>
<td>PHYS290 or</td>
<td>3-6</td>
</tr>
<tr>
<td>PHYS204–206</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-12</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH341–343</td>
<td>12</td>
</tr>
<tr>
<td>CH337</td>
<td>3</td>
</tr>
<tr>
<td>CH348–349</td>
<td>8</td>
</tr>
<tr>
<td>CH411–413</td>
<td>12</td>
</tr>
<tr>
<td>CH417–419</td>
<td>12</td>
</tr>
<tr>
<td>Advanced Electives (see Advanced Electives table)</td>
<td>9-12</td>
</tr>
<tr>
<td>CH429</td>
<td>5</td>
</tr>
<tr>
<td>Total Credits</td>
<td>79-82</td>
</tr>
</tbody>
</table>

Advanced Electives

Advanced electives (e.g., three courses or 9 credits of research or one course and 6 credits of research) chosen from the following: 1

- CH401 Research: [Topic]
- CH420 Physical Organic Chemistry I
- CH421 Physical Organic Chemistry II
- CH431 Inorganic Chemistry
- CH432 Inorganic Chemistry
- CH433 Inorganic Chemistry
- CH441 Quantum Chemistry
- CH442 Quantum Chemistry and Spectroscopy
- CH443 Quantum Chemistry and Spectroscopy
- CH444 Chemical Thermodynamics
- CH445 Statistical Mechanics
- CH446 Chemical Kinetics: [Topic]
- CH447 Computational Chemistry
- CH452 Advanced Organic Chemistry—Stereochemistry and Reactions
- CH461 Biochemistry
- CH462 Biochemistry
- CH463 Biochemistry
- CH464 RNA Biochemistry
- CH465 Physical Biochemistry
- CH467 Biochemistry Laboratory
- GEOL471 Thermodynamic Geochemistry
- GEOL472 Aqueous-Mineral-Gas Equilibria
- GEOL473 Isotope Geochemistry
- PHYS412–413 Mechanics, Electricity, and Magnetism
- PHYS414–415 Quantum Physics
- Total Credits 9-12

1 Other courses may be included with advisor approval.

Total Credits: 171-194
Biochemistry Major

Many undergraduate students who are interested in advanced study using molecular approaches to biological problems (e.g., biochemistry, molecular biology, neurochemistry, physical biochemistry, or perhaps medical research) may want to include courses in biologically based subjects. For these students, the Department of Chemistry offers a biochemistry major.

Courses taken to satisfy major requirements must be passed with grades of C– or better. Variations in courses and order may be worked out in consultation with an advisor.

Students who plan to attend graduate school should include research in their advanced work. If chemical research is included as part of the advanced work, at least 6 credits of CH401 Research: [Topic] must be completed. Students who plan to apply to medical schools should investigate the need for a physics laboratory course that is not included in this curriculum.

Bachelor of Arts Degree Requirements in Biochemistry

CH224H–226H Honors General Chemistry 12
orCH221–223 General Chemistry
CH227–229 General Chemistry Laboratory 6
orCH237–239 Advanced General Chemistry Laboratory
CH337 Organic Chemistry Laboratory 3
CH341–343 Majors Track Organic Chemistry I-III 12
CH348 Organic Chemistry Laboratory for Majors 4
CH411–412 Physical Chemistry 8
CH461–463 Biochemistry 12
CH467 Biochemistry Laboratory 4

Total Credits 61

Related Science Requirements

MATH251–253 Calculus I-III 12
PHYS201–203 General Physics 12
orPHYS251–253 Foundations of Physics I
BI281H–282H Honors Biology I-II 10
BI320 Molecular Genetics 4

Total Credits 38

Physical Laboratory Requirement

Select one of the following: 3-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS204–206</td>
<td>Introductory Physics Laboratory</td>
</tr>
<tr>
<td>PHYS290</td>
<td>Foundations of Physics Laboratory (three terms)</td>
</tr>
<tr>
<td>CH417</td>
<td>Physical Chemistry Laboratory</td>
</tr>
<tr>
<td>CH418</td>
<td>Physical Chemistry Laboratory</td>
</tr>
</tbody>
</table>

Total Credits 3-8

Advanced Laboratory Requirements

Select one of the following: 4-6

Any 400-level chemistry laboratory course

Advanced Electives

Five approved 400-level courses in chemistry, biology, and physics. Students may use one approved 300-level biology course (BI 321, 322, 328, or 360) as one of the five advanced electives. 2

CH413 Physical Chemistry
CH417 Physical Chemistry Laboratory
CH418 Physical Chemistry Laboratory
CH419 Physical Chemistry Laboratory
CH420 Physical Organic Chemistry I
CH421 Physical Organic Chemistry II
CH429 Instrumental Analysis
CH431 Inorganic Chemistry
CH432 Inorganic Chemistry
CH433 Inorganic Chemistry
CH437
CH441 Quantum Chemistry
CH442 Quantum Chemistry and Spectroscopy
CH443 Quantum Chemistry and Spectroscopy
CH444 Chemical Thermodynamics
CH445 Statistical Mechanics
CH446 Chemical Kinetics: [Topic]
CH447 Computational Chemistry
CH452 Advanced Organic Chemistry—Stereochemistry and Reactions
CH464 RNA Biochemistry
CH465 Physical Biochemistry
BI321
BI322 Cell Biology
BI328 Developmental Biology
BI360 Neurobiology
BI422 Protein Toxins in Cell Biology
BI423 Human Molecular Genetics
BI424 Advanced Molecular Genetics
BI426 Genetics of Cancer
BI428 Developmental Genetics
BI433 Bacterial-Host Interactions
BI461 Systems Neuroscience
BI463 Cellular Neuroscience
BI466 Developmental Neurobiology
BI480 Evolution of Development
BI484 Molecular Evolution
BI487 Molecular Phylogenetics
BI493 Genomic Approaches and Analysis

Total Credits 21-21

1. CH401 Research: [Topic] (three terms)
2. One approved 300-level biology course (BI 321, 322, 328, or 360) as one of the five advanced electives.
Advisor approval and a written report are required for Research.

See advisor for complete list. Courses used to satisfy the physical and advanced laboratory requirements cannot also be used as an advanced elective.

Sample Program for Biochemistry Majors

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H Honors General Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>or CH221–223 General Chemistry</td>
<td></td>
</tr>
<tr>
<td>CH227–229 General Chemistry Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>237-239</td>
<td></td>
</tr>
<tr>
<td>WR121 College Composition I</td>
<td>8</td>
</tr>
<tr>
<td>MATH251–253 Calculus I-III</td>
<td>12</td>
</tr>
<tr>
<td>Electives (general-education, 8-12 group-satisfying courses)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI281H–282H Honors Biology I-II</td>
<td>10</td>
</tr>
<tr>
<td>BI320 Molecular Genetics</td>
<td>4</td>
</tr>
<tr>
<td>CH341–343 Majors Track Organic Chemistry I-III</td>
<td>12</td>
</tr>
<tr>
<td>CH337 Organic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CH348 Organic Chemistry Laboratory for Majors</td>
<td>4</td>
</tr>
<tr>
<td>Electives (general-education, 8-12 group-satisfying courses)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH461–463 Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>CH467 Biochemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYS201–203 General Physics</td>
<td>12</td>
</tr>
<tr>
<td>PHYS204–206 Introductory Physics Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>General-education electives and 8-12 advanced chemistry-biology electives</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH411–412 Physical Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>CH401 Research: [Topic] (or advanced laboratory)</td>
<td>4-6</td>
</tr>
<tr>
<td>General-education electives and 21-28 advanced chemistry-biology electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 161-183

Bachelor of Science Degree Requirements in Biochemistry

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H Honors General Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>or CH221–223 General Chemistry</td>
<td></td>
</tr>
<tr>
<td>CH227–229 General Chemistry Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>or CH237–239 Advanced General Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CH337 Organic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CH341–343 Majors Track Organic Chemistry I-III</td>
<td>12</td>
</tr>
<tr>
<td>CH348 Organic Chemistry Laboratory for Majors</td>
<td>4</td>
</tr>
<tr>
<td>CH411–412 Physical Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>CH461–463 Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>CH467 Biochemistry Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 61

Related Science Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH251–253 Calculus I-III</td>
<td>12</td>
</tr>
<tr>
<td>PHYS201–203 General Physics</td>
<td>12</td>
</tr>
<tr>
<td>or PHYS251–253 Foundations of Physics I</td>
<td></td>
</tr>
<tr>
<td>BI281H–282H Honors Biology I-II</td>
<td>10</td>
</tr>
<tr>
<td>BI320 Molecular Genetics</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 38

Physical Laboratory Requirement

Select one of the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS204–206 Introductory Physics Laboratory</td>
<td>3-8</td>
</tr>
<tr>
<td>PHYS290 Foundations of Physics Laboratory (three terms)</td>
<td></td>
</tr>
<tr>
<td>CH417 Physical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CH418 Physical Chemistry Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 3-8

Advanced Laboratory Requirements

Select one of the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 400-level chemistry laboratory course</td>
<td>4-6</td>
</tr>
<tr>
<td>CH401 Research: [Topic] (three terms)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits: 4-6

Advanced Electives

Five approved 400-level courses in chemistry, biology, and physics. Students may use one approved 300-level biology course (BI 321, 322, 328, or 360) as one of the five advanced electives.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH413 Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CH417 Physical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CH418 Physical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CH419 Physical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CH420 Physical Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CH421 Physical Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CH429 Instrumental Analysis</td>
<td></td>
</tr>
<tr>
<td>CH431 Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CH432 Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CH433 Inorganic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 21-21
CH437 Quantum Chemistry
CH441 Quantum Chemistry and Spectroscopy
CH442 Quantum Chemistry and Spectroscopy
CH443 Chemical Thermodynamics
CH444 Statistical Mechanics
CH445 Chemical Kinetics: [Topic]
CH446 Computational Chemistry
CH452 Advanced Organic Chemistry—Stereochemistry and Reactions
CH464 RNA Biochemistry
CH465 Physical Biochemistry
BI312 Cell Biology
BI322 Developmental Biology
BI360 Neurobiology
BI422 Protein Toxins in Cell Biology
BI423 Human Molecular Genetics
BI424 Advanced Molecular Genetics
BI426 Genetics of Cancer
BI428 Developmental Genetics
BI433 Bacterial-Host Interactions
BI461 Systems Neuroscience
BI463 Cellular Neuroscience
BI466 Developmental Neurobiology
BI480 Evolution of Development
BI484 Molecular Evolution
BI487 Molecular Phylogenetics
BI493 Genomic Approaches and Analysis

Total Credits: 20-21

1 Advisor approval and a written report are required for Research.
2 See advisor for complete list. Courses used to satisfy the physical
 and advanced laboratory requirements cannot also be used as an
 advanced elective.

Sample Program for Biochemistry Majors

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH224H–226H or 221-223</td>
<td>Honors General Chemistry 12</td>
</tr>
<tr>
<td>CH227–229 or 237-239</td>
<td>General Chemistry Laboratory 6</td>
</tr>
<tr>
<td>WR121 &WR123</td>
<td>College Composition I 8</td>
</tr>
<tr>
<td>MATH251–253</td>
<td>Calculus I-III 12</td>
</tr>
<tr>
<td>Electives (general-education, group-satisfying courses)</td>
<td>8-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI281H–282H</td>
<td>Honors Biology I-II 10</td>
</tr>
<tr>
<td>BI320</td>
<td>Molecular Genetics 4</td>
</tr>
<tr>
<td>CH341–343</td>
<td>Majors Track Organic Chemistry I-III 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH461–463</td>
<td>Biochemistry 12</td>
</tr>
<tr>
<td>CH467</td>
<td>Biochemistry Laboratory 4</td>
</tr>
<tr>
<td>PHYS201–203</td>
<td>General Physics 12</td>
</tr>
<tr>
<td>PHYS204–206</td>
<td>Introductory Physics Laboratory 6</td>
</tr>
<tr>
<td>General-education electives and advanced chemistry-biology electives</td>
<td>8-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH411–412</td>
<td>Physical Chemistry 8</td>
</tr>
<tr>
<td>CH401</td>
<td>Research: [Topic] (or advanced laboratory) 4-6</td>
</tr>
<tr>
<td>General-education electives and advanced chemistry-biology electives</td>
<td>21-28</td>
</tr>
</tbody>
</table>

Total Credits: 161-183

Honors Program

The criteria used for the selection of students who graduate with departmental honors in chemistry or biochemistry are as follows:

1. Grade point average (GPA) of at least 3.50 in all graded courses
2. Suitable accomplishment in undergraduate chemical or related research. Specifically, the student must pursue a research problem for one academic year or longer and be recommended as worthy of honors by the faculty supervisor. Positive accomplishment and publishable results are expected but not required
3. Endorsement for a major with honors by a member of the university faculty
4. Completion of all course requirements for the BS degree in chemistry. Waivers or substitutions allowed with the chemistry faculty’s approval

Chemistry Minor

A minor in chemistry may be designed from course work in general chemistry, including the laboratory sequence, and at least four additional upper-division courses. University requirements for the minor include a total of 24 credits in chemistry, 15 of which must be in upper-division courses and 12 of which must be completed at the University of Oregon. All courses for the minor must be completed with grades of C— or better. Credits earned in CH407 Seminar: [Topic], CH405 Reading and Conference: [Topic], and CH409 Special Laboratory Problems may not be applied as required course work for the minor.
Biochemistry Minor

Lower Division
General chemistry sequence 12
General chemistry laboratories 6

Upper Division
CH331 Organic Chemistry I 8
&CH335 and Organic Chemistry II
CH461 Biochemistry 8
&CH462 and Biochemistry
CH463 Biochemistry 4
orCH467 Biochemistry Laboratory

Total Credits 38

Other courses may be submitted for consideration and approval by the department. At least 12 credits for the biochemistry minor must be completed at the University of Oregon. All courses applied to the minor must be completed with grades of C– or better. Credits earned in CH407 Seminar: [Topic], CH405 Reading and Conference: [Topic], and CH409 Special Laboratory Problems may not be applied to required course work for the biochemistry minor.

Academic Minors for Chemistry Majors
A carefully chosen minor can complement and enhance undergraduate study in chemistry. Following is a selection of academic minors that chemistry majors might want to consider

- biology
- business administration
- computer and information science
- economics
- environmental studies
- geological sciences
- human physiology
- mathematics
- physics

Kindergarten through Secondary Teaching Careers
Students who complete the BA or BS degree with a major in chemistry or biochemistry are eligible to apply for the College of Education’s fifth-year licensure program in middle-secondary teaching or the fifth-year licensure program to become an elementary teacher. More information is available from the department’s K–12 education advisors, Catherine Page and Julie Haack; see also the College of Education section of this catalog.

Graduate Studies
Graduate work in chemistry is a research-oriented PhD program with options in

- biochemistry and molecular biology
- biophysics
- bioorganic and medicinal chemistry
- environmental chemistry
- inorganic and organometallic chemistry
- materials chemistry
- optics and spectroscopy
- organic synthesis
- polymer chemistry
- physical chemistry
- solid-state chemistry
- statistical mechanics of liquids and complex fluids
- surfaces and interfaces
- theoretical chemical physics

Master of science (MS) and master of arts (MA) degrees are also offered.

A strength of the University of Oregon program is its interdisciplinary approach to research and teaching. Many important advances in chemistry occur at the junctions of classically defined divisions of science. Collaborative interaction between these divisions is fostered through interdisciplinary research institutes. Chemical scientists may be interested in the Institute of Molecular Biology, the Institute of Theoretical Science, the Materials Science Institute, the Oregon Center for Optics, and the programs in cell biology and in molecular synthesis, structure, and dynamics.

First-year students are offered financial assistance through graduate teaching fellowships (GTFs). Research assistantships are typically available for students with advanced standing. These research appointments are funded through grants to the university by federal agencies and private (industrial) sources for support of the basic research programs in the department. Students are selected for these positions based on their interest in a particular research area and by mutual agreement of the student and the faculty member directing the work.

An illustrated publication, University of Oregon Doctoral Program in Chemistry, may be requested from the department. The booklet presents information about the program, facilities, financial support, faculty members and their individual research interests, housing, and the local environment. People who request the booklet also receive information about admission and application forms for admission and graduate teaching fellowships.

Biochemistry, Molecular Biology, Cell Biology
One of the most active areas of research is the study of the molecular bases of cell function, including synthesis of macromolecules, regulation of gene expression, development, cell movement, and the structure and function of biological membranes. Research in these areas has been fostered by close collaboration among biologists, chemists, and physicists. The interdisciplinary nature of these programs has been greatly strengthened by the Institute of Molecular Biology and the program in cell biology. Eight members of the chemistry department are affiliated with these programs. Entering graduate students are in an excellent position to take advantage of the molecular-oriented avenues to study biological problems.

Biophysical Chemistry
Biophysical chemistry provides close collaboration and educational interaction among faculty members and students. Research groups that are developing and applying physical methods work closely with molecular and cellular biologists, neurobiologists, biochemists, and synthetic organic chemists. Most of the research programs in biophysical chemistry are interdisciplinary.
Another area of general interest is the nature of the excited electronic states of biopolymer components. This includes the use of the optical properties of biopolymers, such as their circular dichroism, as a probe of their conformational state; the relationship of excited state conformation changes to their resonance Raman spectra; and a fundamental interest in the nature of excited states.

Materials Science
The discipline of materials science seeks to understand the structures, properties, and structure-property relationships of condensed phase materials. It is by nature interdisciplinary, combining expertise from the fields of chemistry, physics, geology, and molecular biology. Most areas of chemistry can make an important contribution to materials science in the synthesis and characterization of various materials. Here the word materials generally means bulk crystalline solids but also includes low-dimensional materials such as thin solid films or nanoscopic “wires” as well as amorphous solids and some aspects of liquids. Much of the excitement of the research in this area derives from the discovery and the improved understanding of new materials that have potential technological applications.

The Materials Science Institute was created to foster collaboration among the materials-oriented research groups at the University of Oregon. Members of the institute are active in the study of the structure, reactivity, and thermodynamics of materials in addition to the characterization of their electronic, magnetic, and optical properties. The chemistry and physics departments, dominant members of the institute, offer courses and seminars on the chemistry and physics of materials to foster the educational and research aspects of materials science. The list of active research topics includes the application of novel synthetic strategies toward the preparation of metastable phases (including the use of thin-film superlattice composites, sol-gel synthesis, self-assembly, and electron beam lithography), ultra-high vacuum surface science, laser-induced dynamics at surfaces, nonlinear optics of interfaces, characterization of electronic materials and devices, studies on the properties of amorphous and glassy materials, quantum size effects and fundamental limits of microelectronic devices, scanning force and scanning tunneling microscopy of modified surfaces and biological molecules, and electron transport across protein assemblies and biotechnological materials. Sharing of facilities and expertise among the various research groups is an important and valued aspect of the Materials Science Institute. Collaboration between institute members and industrial and national research laboratories is also an important dimension of the program. See also Materials Science Institute in the Research Institutes and Centers section of this catalog.

Organic, Bioorganic, Inorganic, Organometallic, and Materials Chemistry
The synthesis of new chemical substances and the study of their fundamental chemical and physical properties is at the heart of organic, bioorganic, organometallic, inorganic, and materials chemistry. Research and teaching in these traditionally distinct subareas is unified through a single, cohesive organic-inorganic area in the chemistry department.

Undergraduate students, graduate students, and postdoctoral researchers in organic-inorganic chemistry enjoy an especially broad education emphasizing the fundamental aspects of chemical synthesis, structural characterization, and mechanisms of chemical reactions and processes. Formal course work is organized around these interdisciplinary themes. Many research projects are interdisciplinary.

Weekly organic-inorganic seminars cover recent advances in organic, organometallic, inorganic, and materials research. Of foremost importance is the contiguous location of research laboratories. This proximity results in an open and active atmosphere that encourages spontaneous discussions of day-to-day research activities and problems, providing a chemical education unsurpassed by any textbook or formal course.

Organic-inorganic researchers have direct access to state-of-the-art instrumentation in the shared organic-inorganic instrumentation facility adjoining the research laboratories. Most faculty members in this area have varied research interests and expertise. Collaboration with researchers working in physics, materials science, biochemistry, and medicinal chemistry enhances the program.

Physical Chemistry
Physical chemistry focuses on understanding the physical basis of chemical phenomena. This goal is pursued through the concerted efforts of experimentalists and theorists. While experimentalists design and carry out laboratory investigations of chemical systems, theorists conceive and develop theoretical tools to explain and predict system properties. Ultimately, physical chemistry is about understanding the mysteries of chemical phenomena at a deep, fundamental level. The discipline draws from and contributes to many areas of chemistry, physics, biology, materials science, engineering, and mathematics.

At the University of Oregon, research in physical chemistry focuses on a variety of topics.

Experimental spectroscopy includes pulsed laser techniques to probe the molecular structure at wet interfaces; the development of new optical techniques to study the motions of intracellular species and macromolecules in liquids; and novel ultrafast, nonlinear spectroscopic methods to study the dynamics of excited states in molecules.

On the theoretical front, topics of interest include dynamics of highly excited molecules using quantum and semiclassical techniques, the development of a formal description of wave-packet interferometry, elucidation of molecular structure through theoretical studies of electronic potential energy surfaces, and theoretical statistical mechanics and simulation.

Much work at Oregon combines frontier experimental and theoretical approaches in tandem on particular topics. Theoretical and experimental studies in statistical mechanics concentrate on soft condensed matter and complex fluids. Another focus is quantum control using coherent and ultrafast laser pulses, pursued along both experimental and theoretical lines.

The physics of chemical systems at interfaces includes spectroscopic studies of organic, inorganic, and biomolecules at surfaces and interfaces as well as electrochemical and electrical investigations of charge transfer at molecular or nanoparticle-based semiconducting interfaces.

The research on semiconductor interfaces aims at identifying and controlling novel systems that enhance or mimic the behavior of conventional semiconductor interfaces.

Industrial Internships for Master’s Degrees in Chemistry
These internships, sponsored by the Materials Science Institute, are described in the Research Centers and Institutes (http://
Courses

CH111. Introduction to Chemical Principles. 4 Credits.
Chemical concepts for students in health care, biological applications, and environmental studies. Topics include atomic structure, solutions, acids, bases, stoichiometry, equilibrium, biomolecules, and organic functional groups. Lecture, demonstration. Prereq: MATH 095.

CH113. The Chemistry of Sustainability. 4 Credits.
Illustrates how chemistry provides innovative materials, processes, and consumer products that support sustainable solutions related to energy utilization, global warming and pollution prevention. Prereq: Math 095 or higher; high school chemistry.

CH114. Green Product Design. 4 Credits.
Illustrates how green chemistry, product design, advertising, and sustainable business practices are used to design greener consumer products and accelerate their adoption in the market.

CH140M. Science, Policy, and Biology. 4 Credits.
Explores biology behind topical issues such as stem cells, cloning, genetically modified organisms, gene therapy, and how policy decisions affect related research. Multi-listed with BI 140M.

CH157M. Information, Quantum Mechanics, and DNA. 4 Credits.
A non-science major's introduction to the physical and chemical concepts explaining how information is stored in and transmitted by physical objects and molecules, including DNA. Multi-listed with PHYS 157M.

CH196. Field Studies: [Topic]. 1-2 Credits.
Repeatable.

CH198. Workshop: [Topic]. 1-2 Credits.
Repeatable.

CH199. Special Studies: [Topic]. 1-5 Credits.
Repeatable.

CH221. General Chemistry. 4 Credits.
First term of the three-term university chemistry sequence: components of matter, quantitative relationships, atomic structure, thermochemistry, and major classes of chemical reaction of the elements. Lectures. Students cannot receive credit for both CH 221 and 224H. Prereq: high school chemistry; pre- or coreq: MATH 111. Concurrent CH 227 or 237 recommended.

CH222. General Chemistry. 4 Credits.
Second term of the three-term university chemistry sequence: molecular bonding, gases and kinetic molecular theory, intermolecular forces, solutions and kinetics. Lectures. Students cannot receive credit for both CH 222 and 225H. Prereq: CH221 or 224H; pre- or coreq: MATH 112. Concurrent CH 228 or 238 recommended.

CH223. General Chemistry. 4 Credits.
Third term of the three-term university chemistry sequence: thermodynamics, equilibrium, electrochemistry, nuclear chemistry. Lectures. Students cannot receive credit for both CH 223 and 226H. Prereq: CH 222 or 225H and MATH 112. Concurrent CH 229 or 239 recommended.

CH224H. Honors General Chemistry. 4 Credits.
First-year university chemistry for students with excellent backgrounds in high school chemistry, physics, and mathematics. Chemical structure, reactions, stoichiometry, thermochemistry, and an introduction to quantum chemistry. Students cannot receive credit for both CH 221 and CH 224H. Prereq: high school chemistry; MATH 112 or equivalent; pre- or coreq: MATH241 or 246 or 251 or 261. Concurrent CH 237 recommended.

CH225H. Honors General Chemistry. 4 Credits.
First-year university chemistry for students with excellent backgrounds in high school chemistry, physics, and mathematics. Chemical bonding, states of matter, solutions, kinetics, and nuclear chemistry. Students cannot receive credit for both CH 222 and CH 225H. Prereq: CH 221 or 224H; pre- or coreq: MATH 242 or 247 or 252 or 262. Concurrent CH238 recommended.

CH226H. Honors General Chemistry. 4 Credits.
First-year university chemistry for students with excellent backgrounds in high school chemistry, physics, and mathematics. Chemical equilibrium, acid-base chemistry, thermodynamics, and electrochemistry. Students cannot receive credit for both CH 223 and CH 226H. Prereq: CH222 or 225H; pre- or coreq: MATH 243 or 247 or 253 or 263. Concurrent CH 239 recommended.

CH227. General Chemistry Laboratory. 2 Credits.
First term of the three-term laboratory sequence: basic laboratory skills, quantitative relationships, qualitative analysis, calorimetry. Pre- or coreq: CH221 or 224H; MATH 111.

CH228. General Chemistry Laboratory. 2 Credits.
Second term of the three-term laboratory sequence: graphical analysis, spectroscopy, spectrophotometry, gas laws, chromatography, kinetics. Prereq: CH227 or 237; pre- or coreq: CH 222 or 225H; MATH 112.

CH229. General Chemistry Laboratory. 2 Credits.
Third term of the three-term laboratory sequence: synthesis, equilibrium, acids and bases, volumetric analyses, electrochemistry, nuclear chemistry. Prereq: CH 228 or 238; pre- or coreq: CH 223 or 226H.

CH237. Advanced General Chemistry Laboratory. 2 Credits.
First-year university laboratory course for students with a strong high school laboratory experience. Projects in analytical and inorganic chemistry emphasize the use of quantitative glassware, gravimetric and volumetric analysis, acid-base and precipitation reactions. Prereq: MATH 112; Pre- or coreq: CH 221 or 224H.

CH238. Advanced General Chemistry Laboratory. 2 Credits.
Projects in inorganic and biochemical chemistry with a focus on absorption spectroscopy, synthesis of coordination compounds, and measuring initial rates of reaction. Prereq: CH 227 or 237; pre- or coreq: CH 222 or 225H.

CH239. Advanced General Chemistry Laboratory. 2 Credits.
Projects in biochemistry and inorganic chemistry involving enzymology, mechanisms of reactions, kinetics, and visible absorption spectroscopy. Prereq: CH 228 or 238; pre- or coreq: CH 223 or 226H.

CH331. Organic Chemistry I. 4 Credits.
Structure, properties, and bonding of organic molecules. Prereq: CH 223 or 226H. Concurrent CH 337 recommended.

CH335. Organic Chemistry II. 4 Credits.
Reactions and mechanisms of organic chemistry. Prereq: CH 331 or 341. Concurrent CH 338 recommended.
CH336. Organic Chemistry III. 4 Credits.
Organic chemistry of biomolecules with a focus on chemical aspects.
Prereq: CH 335 or 342. Concurrent CH 339 recommended.

CH337. Organic Chemistry Laboratory. 3 Credits.
Principles and techniques of laboratory practice in organic chemistry.
Prereq: CH 229 or 239; pre- or coreq: CH 331.

CH338. Organic Chemistry Laboratory. 3 Credits.
Principles and techniques of laboratory practice in organic chemistry.
Prereq: CH 331 or 341, 337; pre- or coreq: CH 335.

CH341. Majors Track Organic Chemistry I. 4 Credits.
Structure, properties, and bonding of organic molecules. Provides a rigorous foundation appropriate for chemistry and biochemistry majors as they become chemical practitioners. Sequence with CH 342, 343.
Prereq: CH 223 or CH 226H. Concurrent CH 337 recommended.

CH342. Majors Track Organic Chemistry II. 4 Credits.
Focuses on mechanisms and reactions of common organic functional groups. Sequence with CH 341, 343.
Prereq: CH 331 (with grade of B– or better) or CH 341. Concurrent CH 348 recommended.

CH343. Majors Track Organic Chemistry III. 4 Credits.
Incorporates topics from the recent chemistry literature. Sequence with CH 341, 342.
Prereq: CH 335 (with grade of B– or better) or CH 342. Concurrent CH 349 recommended.

CH348. Organic Chemistry Laboratory for Majors. 4 Credits.
Problem solving in the organic chemistry laboratory. Sequence with CH 337, 349.
Prereq: CH 337; CH 331 or 341; coreq: CH 342.

CH349. Organic Chemistry Lab for Majors. 4 Credits.
Organic chemistry laboratory projects. Two-dimensional nuclear magnetic resonance techniques. Sequence with CH 337, 348.
Prereq: CH 348; coreq: CH 343.

CH360. Physiological Biochemistry. 4 Credits.
For preprofessional health science students. Topics include protein structure and function, enzyme mechanisms, central metabolism and bioenergetics, integration and regulation of metabolism by hormone action. Students cannot receive credit for both CH 360 and 462.
Prereq: CH 336 or 343; BI 214 or 282H recommended.

CH399. Special Studies: [Topic]. 1-5 Credits.
Repeatable.

CH401. Research: [Topic]. 1-21 Credits.
Repeatable. Introduction to methods of chemical investigation. For advanced undergraduates by arrangement with individual faculty members.

CH403. Thesis. 1-12 Credits.
Repeatable. Open to students eligible to work for a bachelor's degree with honors in chemistry or biochemistry.
Prereq: Honors majors.

CH405. Reading and Conference: [Topic]. 1-21 Credits.
Repeatable.

CH406. Field Studies: [Topic]. 1-21 Credits.
Repeatable.

CH407. Seminar: [Topic]. 1-12 Credits.
Repeatable. Biochemistry seminar for undergraduates who have completed or are enrolled in CH 461, 462, 463. No graduate credit.

CH408. Workshop: [Topic]. 1-21 Credits.
Repeatable.

CH409. Special Laboratory Problems. 1-21 Credits.
Repeatable. Nonresearch-oriented laboratory instruction and off-campus research and laboratory experience.

CH410. Experimental Course: [Topic]. 1-5 Credits.
Repeatable.

CH411. Physical Chemistry. 4 Credits.
Methods of physics applied to chemical problems, including inorganic, organic, and biochemistry. Introduction to chemical thermodynamics. Prereq: two years of college chemistry (except for physics majors), PHYS 201, 202, 203; MATH 253; MATH 256, 281, 282 strongly recommended.

CH412. Physical Chemistry. 4 Credits.
Methods of physics applied to chemical problems, including inorganic, organic, and biochemistry. Introduction to statistical mechanics and rate processes.
Prereq: two years of college chemistry (except for physics majors); CH 411; PHYS 201, 202, 203; MATH 253; MATH 256, 281, 282 strongly recommended.

CH413. Physical Chemistry. 4 Credits.
Methods of physics applied to chemical problems, including inorganic, organic, and biochemistry. Introduction to quantum chemistry.
Prereq: two years of college chemistry (except for physics majors), PHYS 201, 202, 203; MATH 253; MATH 256, 281, 282 strongly recommended.

CH417. Physical Chemistry Laboratory. 4 Credits.
Experiments in thermodynamics, modern electronic measurements, computer modeling, and data reduction.
Pre or coreq: CH 411.

CH418. Physical Chemistry Laboratory. 4 Credits.
Experiments in statistical mechanics, chemical kinetics, plasma chemistry, and mass spectrometry.
Prerequisite CH 417; Pre or coreq: CH 412.

CH419. Physical Chemistry Laboratory. 4 Credits.
Experiments in reaction mechanism, quantum chemistry, and laser-excited chemical and physical processes to illustrate theoretical principles.
Prereq: CH 417; pre or coreq: CH 413.

CH420. Physical Organic Chemistry I. 4 Credits.
Modern physical organic chemistry including chemical bonding, acid-base chemistry, thermochemistry, noncovalent interactions, and introduction to computational chemistry. Sequence with CH 421/521.
Prereq: CH 336.

CH421. Physical Organic Chemistry II. 4 Credits.
Modern physical organic chemistry including tools to study reaction mechanisms, kinetic analysis, isotope effects, and qualitative molecular orbital theory. Sequence with CH 420/520.
Prereq: CH 420/520.

CH429. Instrumental Analysis. 5 Credits.
Use of instrumental methods for quantitative determinations of unknown chemical samples.
Prereq: CH 417.

CH431. Inorganic Chemistry. 4 Credits.
Introduction to group theory for molecular symmetry; syntheses, structures, reactions, and reaction mechanisms of coordination complexes and organometallic complexes.
CH432. Inorganic Chemistry. 4 Credits.
Bioinorganic chemistry: metals in biological systems; coordination chemistry, reactions, spectroscopy, metalloclusters, and synthetic modeling.
Prereq: CH 431 recommended.

CH433. Inorganic Chemistry. 4 Credits.
Solid-state inorganic chemistry: solid-state structure and its determination; the electrical, magnetic, and mechanical properties of materials and their physical description.
Prereq: CH 431 recommended.

CH441. Quantum Chemistry. 4 Credits.
The principles of time-independent quantum mechanics and their application to model atomic and molecular systems.
Prereq: CH 413 or equivalent.

CH442. Quantum Chemistry and Spectroscopy. 4 Credits.
Molecular structure theory, perturbation theory, time-dependent quantum mechanics, theory of spectra, selection rules.
Prereq: CH 441 or equivalent.

CH443. Quantum Chemistry and Spectroscopy. 4 Credits.
Experimental spectra of atomic and molecular systems and surfaces.
Prereq: CH 442 or equivalent.

CH444. Chemical Thermodynamics. 4 Credits.
The laws of thermodynamics and their applications, including those to nonideal chemical systems.
Prereq: CH 413 or equivalent.

CH445. Statistical Mechanics. 4 Credits.
Molecular basis of thermodynamics. Applications to the calculation of the properties of noninteracting and weakly interacting systems.
Prereq: CH 413 or equivalent.

CH446. Chemical Kinetics: [Topic]. 4 Credits.
Repeatable. Description and interpretation of the time evolution of chemical systems.
Prereq: CH 413 or equivalent.

CH447. Computational Chemistry. 4 Credits.
Introduction to modern computational methods used to understand the properties of molecules.
Prereq: CH 411, 412; or PHYS 353.

CH451. Advanced Organic-Inorganic Chemistry. 4 Credits.
Principles of organic-inorganic reaction dynamics; kinetics and mechanisms, linear free-energy relationships, isotope effects, substitution reactions, dynamic behavior of reactive intermediates, electron transfer chemistry.
Prereq: CH 336 or equivalent.

CH452. Advanced Organic Chemistry—Stereochimistry and Reactions. 4 Credits.
Principles and applications of stereochemistry; reagents and reactions, with mechanisms, used in contemporary organic synthesis; examples taken from the current literature.

CH461. Biochemistry. 4 Credits.
Structure and function of macromolecules. Exposure to calculus and physical chemistry recommended.
Prereq: CH 336 or 343.

CH462. Biochemistry. 4 Credits.
Metabolism and metabolic control processes. Energy and sensory transduction mechanisms.
Prereq: CH 461.
CH520. Physical Organic Chemistry I. 4 Credits.
Modern physical organic chemistry including chemical bonding, acid-base chemistry, thermochemistry, noncovalent interactions, and introduction to computational chemistry. Sequence with CH 421/521.

CH521. Physical Organic Chemistry II. 4 Credits.
Modern physical organic chemistry including tools to study reaction mechanisms, kinetic analysis, isotope effects, and qualitative molecular orbital theory. Sequence with CH 420/520.

CH531. Inorganic Chemistry. 4 Credits.
Introduction to group theory for molecular symmetry; syntheses, structures, reactions, and reaction mechanisms of coordination complexes and organometallic complexes.

CH532. Inorganic Chemistry. 4 Credits.
Bioinorganic chemistry: metals in biological systems; coordination chemistry, reactions, spectroscopy, metalloclusters, and synthetic modeling.
Prereq: CH 531 recommended.

CH533. Inorganic Chemistry. 4 Credits.
Solid-state inorganic chemistry: solid-state structure and its determination; the electrical, magnetic, and mechanical properties of materials and their physical description.
Prereq: CH 531 recommended.

CH541. Quantum Chemistry. 4 Credits.
The principles of time-independent quantum mechanics and their application to model atomic and molecular systems.
Prereq: CH 4/513 or equivalent.

CH542. Quantum Chemistry and Spectroscopy. 4 Credits.
Molecular structure theory, perturbation theory, time-dependent quantum mechanics, theory of spectra, selection rules.
Prereq: CH 4/541 or equivalent.

CH543. Quantum Chemistry and Spectroscopy. 4 Credits.
Experimental spectra of atomic and molecular systems and surfaces.
Prereq: CH 4/542 or equivalent.

CH544. Chemical Thermodynamics. 4 Credits.
The laws of thermodynamics and their applications, including those to nonideal chemical systems.
Prereq: CH 4/513 or equivalent.

CH545. Statistical Mechanics. 4 Credits.
Molecular basis of thermodynamics. Applications to the calculation of the properties of noninteracting and weakly interacting systems.
Prereq: CH 413/513 or equivalent.

CH546. Chemical Kinetics: [Topic]. 4 Credits.
Repeatable. Description and interpretation of the time evolution of chemical systems.
Prereq: CH 4/513 or equivalent.

CH547. Computational Chemistry. 4 Credits.
Introduction to modern computational methods used to understand the properties of molecules.

CH551. Advanced Organic-Inorganic Chemistry. 4 Credits.
Principles of organic-inorganic reaction dynamics; kinetics and mechanisms, linear free-energy relationships, isotope effects, substitution reactions, dynamic behavior of reactive intermediates, electron transfer chemistry.
Prereq: CH 336 or equivalent.

CH552. Advanced Organic Chemistry—Stereochemistry and Reactions. 4 Credits.
Principles and applications of stereochemistry; reagents and reactions, with mechanisms, used in contemporary organic synthesis; examples taken from the current literature.

CH561. Biochemistry. 4 Credits.
Structure and function of macromolecules.

CH562. Biochemistry. 4 Credits.
Metabolism and metabolic control processes. Energy and sensory transduction mechanisms.
Prereq: CH 461/561.

CH563. Biochemistry. 4 Credits.
Mechanisms and regulation of nucleic acid and protein biosynthesis.
Other current topics in biochemical genetics.
Prereq: CH 461/561.

CH564. RNA Biochemistry. 4 Credits.
Introduction to the diverse field of RNA biochemistry.

CH565. Physical Biochemistry. 4 Credits.
Physical chemical properties of biological macromolecules; forces and interactions to establish and maintain macromolecular conformations; physical bases of spectroscopic, hydrodynamic, and rapid-reaction investigative techniques. Offered alternate years.

CH566. Structural Biochemistry. 4 Credits.
Protein and nucleic acid structures and energetics. Structure determination by x-ray crystallography and nuclear magnetic resonance. Computational methods for structural analysis. Offered alternate years.
Prereq: CH 561.

CH567. Biochemistry Laboratory. 4 Credits.
Methods of modern molecular biology and protein purification.

CH601. Research: [Topic]. 1-16 Credits.
Repeatable.

CH602. Supervised College Teaching. 1-5 Credits.
Repeatable.

CH603. Dissertation. 1-16 Credits.
Repeatable.

CH604. Seminar: [Topic]. 1-16 Credits.
Repeatable.

CH605. Reading and Conference: [Topic]. 1-16 Credits.
Repeatable.

CH606. Field Studies: [Topic]. 1-16 Credits.
Repeatable.

CH607. Seminar: [Topic]. 1-5 Credits.
Repeatable. Seminars offered in biochemistry, chemical physics, materials science, molecular biology, neuroscience, organic-inorganic chemistry, and physical chemistry.

CH608. Workshop: [Topic]. 1-16 Credits.
Repeatable.

CH609. Terminal Project. 1-16 Credits.
Repeatable.

CH610. Experimental Course: [Topic]. 1-5 Credits.
Repeatable.

CH613. Organic Chemistry: [Topic]. 1-4 Credits.
Repeatable. Topics include bioorganic and bioinorganic chemistry, computational chemistry, green chemistry, medicinal chemistry, natural products, organometallic chemistry, polymers, catalysis, molecular motors, and spectroscopic methods for structure determination. Repeatable when topic changes.
CH616. Biochemistry: [Topic]. 1-4 Credits.
Repeatable. Topics include enzyme mechanisms, stability and conformation of macromolecules, nucleic acids and nucleic acid protein complexes, conformational analysis of macromolecules, protein and nucleic acid biosynthesis. Repeatable when topic changes.

Repeatable. Preparation and delivery of colloquium-style lectures in organic-inorganic chemistry based on papers from the literature. Repeatable for maximum of 12 credits.

CH624. Physical Chemistry Journal Club. 1 Credit.
Repeatable. Preparation and delivery of colloquium-style lectures in physical chemistry based on papers from the literature. Repeatable for maximum of 12 credits.

CH658. Synthetic Organic Reactions. 4 Credits.
Structured laboratory exercises to perform examples of the various reactions discussed in lectures.

CH659. Advanced Synthesis Laboratory. 4 Credits.
Multistep syntheses of diverse target molecules.

CH662. Advanced Biochemistry. 4 Credits.
Detailed consideration of enzyme mechanisms, macromolecular structure, protein-nucleic acid interactions, and selected aspects of biological synthesis.

CH663. Advanced Biochemistry. 4 Credits.
Detailed consideration of enzyme mechanisms, macromolecular structure, protein-nucleic acid interactions, and selected aspects of biological synthesis.

CH667. Polymers: Synthesis, Characterization, Processing. 4 Credits.
Methods of polymer synthesis and characterization; kinetics and mechanisms of the principal polymerization reactions. Introduction to mechanical properties and fabrication techniques.

CH668. Physical Chemistry of Polymers and Coatings. 4 Credits.
Statistical and thermodynamic models for the equilibrium configuration, conformation, structure, mechanical properties, and phase transitions of polymer solutions, dense melts, liquid crystals.

CH669. Polymer Synthesis and Characterization Laboratory. 4 Credits.
Preparation and physical characterization of polymers; emphasis on polymers of commercial interest.

CH677. Semiconductor Device Physics. 4 Credits.
Elementary theory of inorganic solids; electronic structures and transport properties of semiconductors. Basic theory of semiconductor devices including diodes, transistors, mosfets, and optoelectronic devices.

CH678. Semiconductor Processing and Characterization Techniques. 4 Credits.
Solid-state and surface chemistry of inorganic semiconductors as it pertains to microelectronic devices.

CH679. Device Processing and Characterization Laboratory. 4 Credits.
Design, fabrication, and testing of semiconductor devices with an emphasis on wafer processing and device realization.